Nonunique continuation for plane uniformly elliptic equations in Sobolev spaces

Pasquale Buonocore; Paolo Manselli

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 4, page 731-754
  • ISSN: 0391-173X

How to cite

top

Buonocore, Pasquale, and Manselli, Paolo. "Nonunique continuation for plane uniformly elliptic equations in Sobolev spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.4 (2000): 731-754. <http://eudml.org/doc/84426>.

@article{Buonocore2000,
author = {Buonocore, Pasquale, Manselli, Paolo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {731-754},
publisher = {Scuola normale superiore},
title = {Nonunique continuation for plane uniformly elliptic equations in Sobolev spaces},
url = {http://eudml.org/doc/84426},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Buonocore, Pasquale
AU - Manselli, Paolo
TI - Nonunique continuation for plane uniformly elliptic equations in Sobolev spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 4
SP - 731
EP - 754
LA - eng
UR - http://eudml.org/doc/84426
ER -

References

top
  1. [1] G. Alessandrini — R. Magnanini, Elliptic equations in divergence form, geometric critical ponts of solutions and Stekloff eigenfunctions, SIAM J. Math. Anal. (1994), 1259-1268. Zbl0809.35070MR1289138
  2. [2] L. Bers — F. John — M. Schechter, "Partial Differential Equations", Interscience, 1964. Zbl0126.00207MR163043
  3. [3] L. Bers — L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, In: Atti del Convegno Internazionale sulle equazioni a derivate parziali, Trieste, 1954, 111-140. Zbl0067.32503MR76981
  4. [4] R. Courant - D. Hilbert, "Methods of Mathematical Physics", Interscience, 1962. Zbl0051.28802
  5. [5] D. Gilbarg - J. Serrin, On isolated singularities of solutions of second order elliptic equations, J. Anal. Math.4 (1955-56), 309-340. Zbl0071.09701MR81416
  6. [6] L. Hörmander, "Linear partial differential operators", Springer, 1964. Zbl0108.09301MR404822
  7. [7] L. Hörmander, Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations (1) 8 (1983), 21-64. Zbl0546.35023MR686819
  8. [8] K. Miller, Non Unique Continuation for Uniformly Parabolic and Elliptic Equations in Self-Adjoint Divergence Form with Hölder Continuous Coefficients, Arch. Rational Mech. Anal. vol. 4 n. 2 (1974), 105-117. Zbl0289.35046MR342822
  9. [9] C. Miranda, "Partial Differential Equations of Elliptic Type", Springer, 1970. Zbl0198.14101MR284700
  10. [10] A Pliś, On Non-Uniqueness in Cauchy Problem for an Elliptic Second Order Differential Equation, Bull. Acad. Pol. Sci., S. mat., vol. XI, n. 3 (1963), 95-100. Zbl0107.07901MR153959
  11. [11] C. Pucci, Un problema variazionale per i coefficienti di equazioni differenziali di tipo ellittico, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Vol. XVI (1962), 159-172. Zbl0197.08802MR141871
  12. [12] M.V. Safonov, Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients, Math. USSR Sbornik (60) (1988), 269-281. Zbl0656.35027MR882838
  13. [13] F. Schultz, On the unique continuation property of elliptic divergence form equations in the plane, Math. Z.228 (1998), 201-206. Zbl0905.35020MR1630571

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.