Systèmes fortement hyperboliques 4×4, dimension réduite et symétrie

Jean Vaillant

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 4, page 839-890
  • ISSN: 0391-173X

How to cite

top

Vaillant, Jean. "Systèmes fortement hyperboliques 4×4, dimension réduite et symétrie." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.4 (2000): 839-890. <http://eudml.org/doc/84430>.

@article{Vaillant2000,
author = {Vaillant, Jean},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {diagonalizability},
language = {fre},
number = {4},
pages = {839-890},
publisher = {Scuola normale superiore},
title = {Systèmes fortement hyperboliques 4×4, dimension réduite et symétrie},
url = {http://eudml.org/doc/84430},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Vaillant, Jean
TI - Systèmes fortement hyperboliques 4×4, dimension réduite et symétrie
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 4
SP - 839
EP - 890
LA - fre
KW - diagonalizability
UR - http://eudml.org/doc/84430
ER -

References

top
  1. [1] H. Delquie — J. Vaillant, Dimension réduite et valeurs propres multiples d'une matrice diagonalisable 4 x 4, Bull. Sci. Math.124 (2000) 319-331. Zbl0961.15003MR1771939
  2. [2] P.D. Lax, Differential equations, difference equations and matrix theory, Comm. Pure Appl. Math.11 (1958), 175-194. Zbl0086.01603MR98110
  3. [3] T. Nishitani, Symmetrization of a class ofhyperbolic systems with real constant coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci.21 (1994), 97-130. Zbl0866.35063MR1276764
  4. [4] T. Nishitani, Symmetrization of hyperbolic systems with non degenerate characteristics, J. Func. Anal.132 (1995), 251-272. Zbl0844.35063MR1347352
  5. [5] T. Nishitani — J. Vaillant, Smoothly symmetrizable systems and the reduced dimensions, Tsukuba J. Math. (à paraître). Zbl0999.35055MR1846874
  6. [6] T. Oshime, Canonical forms of 3 x 3 strongly hyperbolic systems with real constant coefficients, J. Math. Kyoto Univ.31 (1991), 937-982. Zbl0797.35107MR1141079
  7. [7] G. Strang, On strong hyperbolicity, J. Math. Kyoto Univ.6 (1967), 397-417. Zbl0174.15103MR217439
  8. [8] S. Spagnolo, On the uniformly diagonalisable systems, Colloque Jean Leray, 1999, Karlskrona, Kluwer Acad. Publish. (à paraître). 
  9. [9] J. Vaillant, Symetrisabilité des matrices localisées d'une matrice fortement hyperbolique, Ann. Scuola. Norm. Sup. Pisa Cl. Sci.5 (1978), 405-427. Zbl0381.35055MR509851
  10. [10] J. Vaillant, Systèmes fortement hyperboliques et systèmes symétriques, C.R. Acad. Sci. Paris Sér. I Math.328 (1999), 407-412. Zbl0931.35088MR1678138
  11. [11] J. Vaillant, Symétrie des opérateurs fortement hyperboliques 4 x 4 ayant un point triple caractéristique dans R3, Ann. Univ. Ferrara Sez. VII Sc. Mat. Suppl. vol. XLV (1999) 339-363. Zbl0990.35090MR1806508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.