Systèmes fortement hyperboliques 4×4, dimension réduite et symétrie
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)
- Volume: 29, Issue: 4, page 839-890
- ISSN: 0391-173X
Access Full Article
topHow to cite
topVaillant, Jean. "Systèmes fortement hyperboliques 4×4, dimension réduite et symétrie." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.4 (2000): 839-890. <http://eudml.org/doc/84430>.
@article{Vaillant2000,
author = {Vaillant, Jean},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {diagonalizability},
language = {fre},
number = {4},
pages = {839-890},
publisher = {Scuola normale superiore},
title = {Systèmes fortement hyperboliques 4×4, dimension réduite et symétrie},
url = {http://eudml.org/doc/84430},
volume = {29},
year = {2000},
}
TY - JOUR
AU - Vaillant, Jean
TI - Systèmes fortement hyperboliques 4×4, dimension réduite et symétrie
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 4
SP - 839
EP - 890
LA - fre
KW - diagonalizability
UR - http://eudml.org/doc/84430
ER -
References
top- [1] H. Delquie — J. Vaillant, Dimension réduite et valeurs propres multiples d'une matrice diagonalisable 4 x 4, Bull. Sci. Math.124 (2000) 319-331. Zbl0961.15003MR1771939
- [2] P.D. Lax, Differential equations, difference equations and matrix theory, Comm. Pure Appl. Math.11 (1958), 175-194. Zbl0086.01603MR98110
- [3] T. Nishitani, Symmetrization of a class ofhyperbolic systems with real constant coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci.21 (1994), 97-130. Zbl0866.35063MR1276764
- [4] T. Nishitani, Symmetrization of hyperbolic systems with non degenerate characteristics, J. Func. Anal.132 (1995), 251-272. Zbl0844.35063MR1347352
- [5] T. Nishitani — J. Vaillant, Smoothly symmetrizable systems and the reduced dimensions, Tsukuba J. Math. (à paraître). Zbl0999.35055MR1846874
- [6] T. Oshime, Canonical forms of 3 x 3 strongly hyperbolic systems with real constant coefficients, J. Math. Kyoto Univ.31 (1991), 937-982. Zbl0797.35107MR1141079
- [7] G. Strang, On strong hyperbolicity, J. Math. Kyoto Univ.6 (1967), 397-417. Zbl0174.15103MR217439
- [8] S. Spagnolo, On the uniformly diagonalisable systems, Colloque Jean Leray, 1999, Karlskrona, Kluwer Acad. Publish. (à paraître).
- [9] J. Vaillant, Symetrisabilité des matrices localisées d'une matrice fortement hyperbolique, Ann. Scuola. Norm. Sup. Pisa Cl. Sci.5 (1978), 405-427. Zbl0381.35055MR509851
- [10] J. Vaillant, Systèmes fortement hyperboliques et systèmes symétriques, C.R. Acad. Sci. Paris Sér. I Math.328 (1999), 407-412. Zbl0931.35088MR1678138
- [11] J. Vaillant, Symétrie des opérateurs fortement hyperboliques 4 x 4 ayant un point triple caractéristique dans R3, Ann. Univ. Ferrara Sez. VII Sc. Mat. Suppl. vol. XLV (1999) 339-363. Zbl0990.35090MR1806508
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.