Almost hermitian geometry on six dimensional nilmanifolds

Elsa Abbena; Sergio Garbiero; Simon Salamon

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 1, page 147-170
  • ISSN: 0391-173X

How to cite

top

Abbena, Elsa, Garbiero, Sergio, and Salamon, Simon. "Almost hermitian geometry on six dimensional nilmanifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.1 (2001): 147-170. <http://eudml.org/doc/84434>.

@article{Abbena2001,
author = {Abbena, Elsa, Garbiero, Sergio, Salamon, Simon},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {147-170},
publisher = {Scuola normale superiore},
title = {Almost hermitian geometry on six dimensional nilmanifolds},
url = {http://eudml.org/doc/84434},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Abbena, Elsa
AU - Garbiero, Sergio
AU - Salamon, Simon
TI - Almost hermitian geometry on six dimensional nilmanifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 1
SP - 147
EP - 170
LA - eng
UR - http://eudml.org/doc/84434
ER -

References

top
  1. [1] E. Abbena - S. Garbiero - S. Salamon, Hermitian geometry on the Iwasawa manifold, Boll. Un. Mat. Ital. Sez.B11 (1997), 231-249. Zbl0886.53046MR1456263
  2. [2] V. Apostolov - G. Grantcharov - S. Ivanov, Hermitian structures on twistor spaces, Ann. Global Anal. Geom.16 (1998), 291-308. Zbl0907.53024MR1626671
  3. [3] C. Benson - C.S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology27 (1988), 513-518. Zbl0672.53036MR976592
  4. [4] F. Campana, Remarques sur les groupes de Kähler nilpotents, C. R. Acad. Sci. Paris317 (1993), 777-780. Zbl0801.53053MR1244429
  5. [5] L.A. Cordero - M. Fernández - A. Gray - L. Ugarte, Nilpotent complex structure on compact nilmanifolds, Rend. Circ. Mat. Palermo, 49 suppl. (1997), 83-100. Zbl0905.58001MR1602971
  6. [6] A. Farinola - M. Falcitelli - S. Salamon, Almost-Hermitian geometry, Differential Geom. Appl.4 (1994), 259-282. Zbl0813.53044MR1299398
  7. [7] A. Gray - L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl.123 (1980), 35-58. Zbl0444.53032MR581924
  8. [8] J-I. Hano, On Kählerian homogeneous spaces of unimodular Lie groups, Amer. J. Math.79 (1957), 885-900. Zbl0096.16203MR95979
  9. [9] L. Magnin, Sur les algèbres de Lie nilpotentes de dimension ≤ 7, J. Geom. Phys.3 (1986), 119-144. Zbl0594.17006
  10. [10] A.I. Malcev, On a class of homogeneous spaces, reprinted in Amer. Math. Soc. Translations, Series 1,9 (1962), 276-307. 
  11. [11] D. McDuff, The moment map for circle action on symplectic manifolds, J. Geom. Phys.5 (1988), 149-160. Zbl0696.53023MR1029424
  12. [12] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math.59 (1954), 531-538. Zbl0058.02202MR64057
  13. [13] R. Penrose - W. Rindler, "Spinors and Space-Time", Volume 1, Cambridge University Press, 1987. Zbl0591.53002MR917488
  14. [14] S. Salamon, Complex structures on nilpotent Lie algebras, to appear in J. Pure Appl. Alegbra. Zbl1020.17006MR1812058
  15. [15] A. Tralle - J. Oprea, "Symplectic Manifolds with no Kaehler Structure", Lect. Notes Math. 1661, Springer-Verlag, 1997. Zbl0891.53001MR1465676

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.