On a nonlocal eigenvalue problem

Juncheng Wei; Liqun Zhang

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 1, page 41-61
  • ISSN: 0391-173X

How to cite

top

Wei, Juncheng, and Zhang, Liqun. "On a nonlocal eigenvalue problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.1 (2001): 41-61. <http://eudml.org/doc/84438>.

@article{Wei2001,
author = {Wei, Juncheng, Zhang, Liqun},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {41-61},
publisher = {Scuola normale superiore},
title = {On a nonlocal eigenvalue problem},
url = {http://eudml.org/doc/84438},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Wei, Juncheng
AU - Zhang, Liqun
TI - On a nonlocal eigenvalue problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 1
SP - 41
EP - 61
LA - eng
UR - http://eudml.org/doc/84438
ER -

References

top
  1. [1] A. Bose - G. Kriegsman, Stability of localized structures in non-local reaction-diffusion equations, Methods Appl. Anal.5 (1998), 351-366. Zbl0935.35064MR1669867
  2. [2] E.N. Dancer, On stability and Hopf bifurcations for chemotaxis systems, to appear in: "Proceedings of IMS Workshop on Reaction-Diffusion Systems 2000" . MR1904528
  3. [3] M. Del Pino, A priori estimates and applications to existence-nonexistence for a semilinear elliptic system, Indiana Univ. Math. J. 43 (1994), 703-728. Zbl0803.35055MR1291536
  4. [4] M. Del Pino - P. Felmer - M. Kowalczyk, Boundary spikes in the Gierer-Meinhardt system, Asymp. Anal., to appear. Zbl1163.35354MR1942277
  5. [5] A. Doelman - A. Gardner - T.J. Kaper, Stability of singular patterns in the 1-D Gray-Scott model: A matched asymptotic approach, PhysicaD. 122 (1998), 1-36. Zbl0943.34039
  6. [6] A. Doelman - A. Gardner - T.J. Kaper, A stability index analysis of 1-D patterns of the Gray-Scott model, Technical Report, Center for BioDynamics, Boston University, submitted. Zbl0994.35059
  7. [7] A. Doelman - T. Kaper - P.A. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity10 (1997), 523-563. Zbl0905.35044MR1438266
  8. [8] P. Freitas, Bifurcation and stability of stationary solutions on nonlocal scalar reaction diffusion equations, J. Dyn. Differential Equations6 (1994), 613-629. Zbl0807.35068MR1303277
  9. [9] P. Freitas, A non-local Sturm-Liouville eigenvalue problem, Proc. Roy. Soc. Edinburg Sect. A 124 (1994), 169-188. Zbl0798.34033MR1272438
  10. [10] P. Freitas, Stability of stationary solutions for a scalar nonlocal reaction diffusion equation, Quart. J. Mech. Appl. Math.48 (1995), 557-582. Zbl0842.35043MR1387092
  11. [11] A. Gierer - H. Meinhardt, A theory of biological pattern formation, Kybemetik (Berlin) 12 (1972), 30-39. 
  12. [12] P. Gray - S.K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability, Chem. Eng. Sci.38 (1983), 29-43. 
  13. [13] P. Gray - S.K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A + 2B → 3B, B → C, Chem. Eng. Sci.39 (1984), 1087-1097. 
  14. [14] J.K. Hale - L.A. Peletier - W.C. Troy, Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis, SIAM J. Appl. Math.61 (2000), 102-130. Zbl0965.34037MR1776389
  15. [15] D. Iron - M.J. Ward, A metastable spike solution for a non-local reaction-diffusion model, SIAM J. Appl. Math.60 (2000), 778-802. Zbl0956.35011MR1740850
  16. [16] D. Iron - M.J. Ward - J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, PhysicaD., to appear. Zbl0983.35020MR1818735
  17. [17] C.-S. Lin - W.-M. Ni, "On the diffusion coefficient of a semilinear Neumann problem", Calculus of variations and partial differential equations (Trento, 1986), 160-174, Lecture Notes in Math., 1340, Springer, Berlin-New York, 1988. Zbl0704.35050MR974610
  18. [18] C.B. Muratov - V.V. Osipov, Spike autosolitions in Gray-Scott model, J. Phys. A-Math. Gen.48 (2000), 8893-8916. MR1801475
  19. [19] W.-M. Ni - I. Takagi, Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math.12 (1995), 327-365. Zbl0843.35006MR1337211
  20. [20] W.-M. Ni - I. Takagi - E. Yanagida, Tohoku Math. J., to appear. 
  21. [21] W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc.45 (1998), 9-18. Zbl0917.35047MR1490535
  22. [22] Y. Nishiura - D. Ueyama, A skeleton structure of self-replicating dynamics, PhysicaD. 130 (1999), 73-104. Zbl0936.35090
  23. [23] Y. Nishiura, Global structure of bifurcation solutions of some reaction-diffusion systems, SIAM J. Math. Anal.13 (1982), 555-593. Zbl0501.35010MR661590
  24. [24] J. Wei, On the construction ofsingle-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations129 (1996), 315-333. Zbl0865.35011MR1404386
  25. [25] J. Wei, On a nonlocal eigenvalue problem and its applications to point-condensations in reaction-diffusion systems, Int. J. Bifur. and Chaos10 (2000), 1485-1496. Zbl1090.35538MR1779676
  26. [26] J. Wei - M. Winter, On the two dimensional Gierer-Meinhardt system with strong coupling, SIAM J. Math. Anal.30 (1999), 1241-1263. Zbl0955.35006MR1718301
  27. [27] J. Wei, On single interior spike solutions of Gierer-Meinhardt system: uniqueness, spectrum estimates and stability analysis, Europ. J. Appl. Math.10 (1999), 353-378. Zbl1014.35005MR1713076
  28. [28] J. Wei, Existence, stability and metastability of point condensation patterns generated by Gray-Scott system, Nonlinearity3 (1999), 593-616. Zbl0984.35160MR1690196
  29. [29] J. Wei, Point condensations generated by Gierer-Meinhardt system: a brief survey, book chapter, In: "New Trends in Nonlinear Partial Differential Equations 2000", Y. Morita - H. Ninomiya - E. Yanagida - S. Yotsutani (eds), pp. 46-59. 
  30. [30] L. Zhang, Uniqueness of positive solutions of Δu + λu + uP = 0 in a ball, Comm. Partial Differential Equations17 (1992), 1141-1164. Zbl0782.35025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.