Higher regularity for nonlinear oblique derivative problems in Lipschitz domains
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 1, page 111-151
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topLieberman, Gary M.. "Higher regularity for nonlinear oblique derivative problems in Lipschitz domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.1 (2002): 111-151. <http://eudml.org/doc/84459>.
@article{Lieberman2002,
abstract = {There is a long history of studying nonlinear boundary value problems for elliptic differential equations in a domain with sufficiently smooth boundary. In this paper, we show that the gradient of the solution of such a problem is continuous when a directional derivative is prescribed on the boundary of a Lipschitz domain for a large class of nonlinear equations under weak conditions on the data of the problem. The class of equations includes linear equations with fairly rough coefficients as well as Bellman equations.},
author = {Lieberman, Gary M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {111-151},
publisher = {Scuola normale superiore},
title = {Higher regularity for nonlinear oblique derivative problems in Lipschitz domains},
url = {http://eudml.org/doc/84459},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Lieberman, Gary M.
TI - Higher regularity for nonlinear oblique derivative problems in Lipschitz domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 1
SP - 111
EP - 151
AB - There is a long history of studying nonlinear boundary value problems for elliptic differential equations in a domain with sufficiently smooth boundary. In this paper, we show that the gradient of the solution of such a problem is continuous when a directional derivative is prescribed on the boundary of a Lipschitz domain for a large class of nonlinear equations under weak conditions on the data of the problem. The class of equations includes linear equations with fairly rough coefficients as well as Bellman equations.
LA - eng
UR - http://eudml.org/doc/84459
ER -
References
top- [1] D. E. Apushkinskaya – A. I. Nazarov, Boundary estimates for the first-order derivatives of a solution to a nondivergent parabolic equation with composite right-hand side and coefficients of lower-order derivatives, Prob. Mat. Anal. 14 (1995), 3-27 [Russian]; English transl. in J. Math. Sci. 77 (1995), 3257-3276. Zbl0860.35046MR1372547
- [2] E. A. Baderko, Schauder estimates for oblique derivative problems, C. R. Acad. Sci. Paris Sér. I. Math. 326 (1998), 1377-1380. Zbl0912.35033MR1649177
- [3] L. A. Caffarelli, Interior estimates for fully nonlinear equations, Ann. Math. 130 (1989), 189-213. Zbl0692.35017MR1005611
- [4] G. C. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations, J. Partial Differential Equations 1 (1988), 12-42. Zbl0699.35152MR985445
- [5] L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 25 (1982), 333-363. Zbl0469.35022MR649348
- [6] D. Gilbarg – L. Hörmander, Intermediate Schauder theory, Arch. Rational Mech. Anal. 74 (1980), 297-318. Zbl0454.35022MR588031
- [7] D. Gilbarg – N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Springer-Verlag, Berlin-New York-Heidelberg, 1977. Second Ed., 1983. Zbl0361.35003MR737190
- [8] G. Giraud, Nouvelle méthode pour traiter certains problèmes relatifs aux èquations du type elliptique, J. Math. Pures Appl. 18 (1939), 111-143. Zbl65.1277.02MR335JFM65.1277.02
- [9] J. Kovats, Fully nonlinear elliptic equations and the Dini condition, Comm. Partial Differential Equations 22 (1997), 1911-1927. Zbl0899.35036MR1629506
- [10] J. Kovats, Dini-Campanato spaces and applications to nonlinear elliptic equations, Electron. J. Differential Equations 1999 (1999), no. 37, 1-20. Zbl0926.35025MR1713596
- [11] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR 47 (1983), 75-108 [Russian]; English transl. in Math.-USSR Izv. 22 (1984), 67-97. Zbl0578.35024MR688919
- [12] G. M. Lieberman, Solvability of quasilinear elliptic equations with nonlinear boundary conditions, Trans. Amer. Math. Soc. 273 (1982), 753-765. Zbl0498.35039MR667172
- [13] G. M. Lieberman, The Perron process applied to oblique derivative problems, Adv. Math. 55 (1985), 161-172. Zbl0567.35027MR772613
- [14] G. M. Lieberman, Regularized distance and its applications, Pacific J. Math. 117 (1985), 329-352. Zbl0535.35028MR779924
- [15] G. M. Lieberman, Mixed boundary value problems for elliptic and parabolic equations of second order, J. Math. Anal. Appl. 113 (1986), 422-440. Zbl0609.35021MR826642
- [16] G. M. Lieberman, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data, Comm. Partial Differential Equations 11 (1986), 167-229. Zbl0589.35036MR818099
- [17] G. M. Lieberman, Oblique derivative problems in Lipschitz domains, Boll. Un. Mat. Ital. (7) 1-B (1987), 1185-1210. Zbl0637.35028MR923448
- [18] G. M. Lieberman, Optimal Hölder regularity for mixed boundary value problems, J. Math. Anal. Appl. 143 (1989), 572-586. Zbl0698.35034MR1022556
- [19] G. M. Lieberman, Intermediate Schauder theory for second order parabolic equations III. The tusk conditions, Appl. Anal. 33 (1989), 25-43. Zbl0702.35109MR1013451
- [20] G. M. Lieberman, “Second Order Parabolic Differential Equations”, World Scientific, Singapore, 1996. Zbl0884.35001MR1465184
- [21] G. M. Lieberman, The maximum principle for equations with composite coefficients, Electron. J. Differential Equations, 2000 (2000) no. 38, 1-17. Zbl0952.35025MR1764710
- [22] G. M. Lieberman, Pointwise estimates for oblique derivative problems in nonsmooth domains, J. Differential Equations 173 (2001), 178-211. Zbl0994.35042MR1836250
- [23] G. M. Lieberman – N. S. Trudinger, Nonlinear oblique boundary value problems for fully nonlinear elliptic equations, Trans. Amer. Math. Soc. 295 (1986), 509-546. Zbl0619.35047MR833695
- [24] M. I. Matiichuk – S. D. Éidelman, On the correctness of the problem of Dirichlet and Neumann for second-order parabolic equations with coefficients in Dini classes, Ukr. Mat. Zh. 26 (1974), 328-337 [Russian]; English transl. in Ukrainian Math. J. 26 (1974), 269-276. Zbl0296.35043MR348271
- [25] J. H. Michael, Barriers for uniformly elliptic equations and the exterior cone condition, J. Math. Anal. Appl. 79 (1981), 203-217. Zbl0454.35002MR603385
- [26] K. Miller, Extremal barriers on cones with Phragmén-Lindelöf theorems and other applications, Ann. Mat. Pura Appl. (4) 90 (1971), 297-329. Zbl0231.35004MR316884
- [27] N. S. Nadirashvili, On the question of the uniqueness of the solution of the second boundary value problem for second order elliptic equations, Mat. Sb. (N. S.) 122 (164) (1983), 341-359 [Russian]; English transl. in Math. USSR-Sb. 50 (1985), 325-341. Zbl0563.35026MR721393
- [28] J. Pipher, Oblique derivative problems for the Laplacian in Lipschitz domains, Rev. Mat. Iberoamericana 3 (1987), 455-472. Zbl0686.35028MR996827
- [29] M. V. Safonov, On the classical solution of nonlinear elliptic equations of second order, Izv. Akad. Nauk SSSR 52 (1988), 1272-1287. [Russian]; English transl. in Math. USSR-Izv. 33 (1989), 597-612. Zbl0682.35048MR984219
- [30] M. V. Safonov, On the oblique derivative problem for second order elliptic equations, Comm. Partial Differential Equations 20 (1995), 1349-1367. Zbl0841.35035MR1335754
- [31] E. Sperner, Jr., Schauder’s existence theorem for -Dini continuous data, Ark. Mat. 19 (1981), 193-216. Zbl0506.35028MR650493
- [32] N. S. Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc. 278 (1983), 751-769. Zbl0518.35036MR701522
- [33] N. S. Trudinger, Hölder gradient estimates for fully nonlinear ellipotic equations, Proc. Roy. Soc. Edinburgh 108A (1988), 57-65. Zbl0653.35026MR931007
- [34] N. N. Uraltseva, Gradient estimates for solutions of nonlinear parabolic oblique boundary problem, in “Geometry and Nonlinear Partial Differential Equations”, American Mathematical Society, Providence, RI, 1992, pp. 119-130. Zbl0770.35034MR1155414
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.