Local approximation of semialgebraic sets
Massimo Ferrarotti; Elisabetta Fortuna; Les Wilson
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 1, page 1-11
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topFerrarotti, Massimo, Fortuna, Elisabetta, and Wilson, Les. "Local approximation of semialgebraic sets." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.1 (2002): 1-11. <http://eudml.org/doc/84464>.
@article{Ferrarotti2002,
	abstract = {Let $A$ be a closed semialgebraic subset of euclidean space of codimension at least one, and containing the origin $O$ as a non-isolated point. We prove that, for every real $s\ge 1$, there exists an algebraic set $V$ which approximates $A$ to order $s$ at $O$. The special case $s=1$ generalizes the result of the authors that every semialgebraic cone of codimension at least one is the tangent cone of an algebraic set.},
	author = {Ferrarotti, Massimo, Fortuna, Elisabetta, Wilson, Les},
	journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
	keywords = {semialgebraic sets; proximity; Hausdorff distance; tangent cone},
	language = {eng},
	number = {1},
	pages = {1-11},
	publisher = {Scuola normale superiore},
	title = {Local approximation of semialgebraic sets},
	url = {http://eudml.org/doc/84464},
	volume = {1},
	year = {2002},
}
TY  - JOUR
AU  - Ferrarotti, Massimo
AU  - Fortuna, Elisabetta
AU  - Wilson, Les
TI  - Local approximation of semialgebraic sets
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2002
PB  - Scuola normale superiore
VL  - 1
IS  - 1
SP  - 1
EP  - 11
AB  - Let $A$ be a closed semialgebraic subset of euclidean space of codimension at least one, and containing the origin $O$ as a non-isolated point. We prove that, for every real $s\ge 1$, there exists an algebraic set $V$ which approximates $A$ to order $s$ at $O$. The special case $s=1$ generalizes the result of the authors that every semialgebraic cone of codimension at least one is the tangent cone of an algebraic set.
LA  - eng
KW  - semialgebraic sets; proximity; Hausdorff distance; tangent cone
UR  - http://eudml.org/doc/84464
ER  - 
References
top- [B-C-R] J. Bochnak – M. Coste – M. F. Roy, “Géométrie algébrique réelle”, Springer-Verlag, 1987. Zbl0633.14016MR949442
- [B1] L. Bröcker, Families of semialgebraic sets and limits, In: “Real Algebraic Geometry” (Rennes 1991), M. Coste – L. Mahé – M.-F. Roy (eds.), Lecture Notes in Math., 1524, Springer-Verlag, Berlin, 1992, pp. 145-162. Zbl0849.14022MR1226248
- [B2] L. Bröcker, On the reduction of semialgebraic sets by real valuations, in: “Recent advances in real algebraic geometry and quadratic forms”, Contemp. Math., 155, Amer. Math. Soc., Providence, RI, 1994, pp. 75-95. Zbl0826.14038MR1260702
- [F-F-W] M. Ferrarotti – E. Fortuna – L. Wilson, Real algebraic varieties with prescribed tangent cones, Pacific J. Math. 194 (2000), 315-323. Zbl1036.14027MR1760783
- [K-R] K. Kurdyka – G. Raby, Densité des ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 39 (1989), 753-771. Zbl0673.32015MR1030848
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 