Sur la composition de séries formelles à croissance contrôlée

Augustin Mouze

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 1, page 73-92
  • ISSN: 0391-173X

Abstract

top
Let F be a holomorphic map from s to s defined in a neighborhood of zero such that F ( 0 ) = 0 . If the jacobian determinant of F is not identically zero, P. M. Eakin and G. A. Harris proved the following result: any formal power series 𝒜 such that 𝒜 F is analytic is itself analytic. If the jacobian determinant of F is identically zero, they proved that the previous conclusion is no more true. J. Chaumat and A.-M. Chollet extended this result in the case of formal power series satisfying growth conditions, of Gevrey type for instance. The author gets similar results when the map F is no more holomorphic. The loss of regularity on 𝒜 is optimal.

How to cite

top

Mouze, Augustin. "Sur la composition de séries formelles à croissance contrôlée." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.1 (2002): 73-92. <http://eudml.org/doc/84468>.

@article{Mouze2002,
author = {Mouze, Augustin},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {fre},
number = {1},
pages = {73-92},
publisher = {Scuola normale superiore},
title = {Sur la composition de séries formelles à croissance contrôlée},
url = {http://eudml.org/doc/84468},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Mouze, Augustin
TI - Sur la composition de séries formelles à croissance contrôlée
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 1
SP - 73
EP - 92
LA - fre
UR - http://eudml.org/doc/84468
ER -

References

top
  1. [1] E. Bierstone, Control of radii of convergence and extension of subanalytic functions, Preprint, University of Toronto (2001). Zbl1082.32002MR2045414
  2. [2] E. Bierstone – P. D. Milman, Geometric and differential properties of subanalytic sets, Ann. of Math. 147 (1998), 731-785. Zbl0912.32006MR1637671
  3. [3] J. Chaumat – A. M. Chollet, Propriétés de l’intersection des classes de Gevrey et de certaines autres classes, Bull. Sci. Math. 122 (1998), 455-485. Zbl0930.26013MR1649410
  4. [4] J. Chaumat – A. M. Chollet, On composite formal power series, Trans. Amer. Math. Soc. 353 (2001), 1691-1703. Zbl0965.13015MR1806723
  5. [5] P. M. Eakin – G. A. Harris, When Φ ( f ) convergent implies f is convergent, Math. Ann. 229 (1977), 201-210. Zbl0355.13010MR444651
  6. [6] A. M. Gabrielov, Formal Relations Between Analytic Functions, Math. USSR-Iz. 7 (1973), 1056-1088. Zbl0297.32007MR346184
  7. [7] G. Glaeser, Fonctions composées différentiables, Ann. of Math. (1963), 193-209. Zbl0106.31302MR143058
  8. [8] B. Malgrange, Sur le théorème de Maillet, Asymptotic Anal. 2 (1989), 1-4. Zbl0693.34004MR991413
  9. [9] A. Mouze, Un théorème d’Artin pour des anneaux de séries formelles à croissance contrôlée, C. R. Acad. Sci. (Paris) 330 (2000), 15-20. Zbl0969.13007MR1741161
  10. [10] A. Mouze, Anneaux de séries formelles à croissance contrôlée, Thèse, Université de Lille, juin 2000. 
  11. [11] R. Moussu – J. C. Tougeron, Fonctions composées analytiques et différentiables, C. R. Acad. Sci. (Paris) 282 (1976), 1237-1240. Zbl0334.32012MR409876
  12. [12] V. Thilliez, Sur les fonctions composées ultradifférentiables, J. Math. Pures Appl. (1997), 499-524. Zbl0878.58008MR1465608
  13. [13] J. C. Tougeron, “Idéaux de fonctions différentiables”, Springer Verlag, Berlin (1972). Zbl0251.58001MR440598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.