The stationary Boltzmann equation in n with given indata

Leif Arkeryd; Anne Nouri

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 2, page 359-385
  • ISSN: 0391-173X

Abstract

top
An L 1 -existence theorem is proved for the nonlinear stationary Boltzmann equation for soft and hard forces in n with given indata on the boundary, when the collision operator is truncated for small velocities.

How to cite

top

Arkeryd, Leif, and Nouri, Anne. "The stationary Boltzmann equation in $\mathbb {R}^n$ with given indata." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.2 (2002): 359-385. <http://eudml.org/doc/84474>.

@article{Arkeryd2002,
abstract = {An $L^1$-existence theorem is proved for the nonlinear stationary Boltzmann equation for soft and hard forces in $\mathbb \{R\}^\{n\}$ with given indata on the boundary, when the collision operator is truncated for small velocities.},
author = {Arkeryd, Leif, Nouri, Anne},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {359-385},
publisher = {Scuola normale superiore},
title = {The stationary Boltzmann equation in $\mathbb \{R\}^n$ with given indata},
url = {http://eudml.org/doc/84474},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Arkeryd, Leif
AU - Nouri, Anne
TI - The stationary Boltzmann equation in $\mathbb {R}^n$ with given indata
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 2
SP - 359
EP - 385
AB - An $L^1$-existence theorem is proved for the nonlinear stationary Boltzmann equation for soft and hard forces in $\mathbb {R}^{n}$ with given indata on the boundary, when the collision operator is truncated for small velocities.
LA - eng
UR - http://eudml.org/doc/84474
ER -

References

top
  1. [1] L. Arkeryd, On the stationary Boltzmann equation in n , IMRN 12 (2000), 626-641. Zbl0965.35126MR1772079
  2. [2] L. Arkeryd – C. Cercignani, On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation, Comm. Partial Differential Equations 14 (1989), 1071-1089. Zbl0688.76053MR1017064
  3. [3] L. Arkeryd – C. Cercignani – R. Illner, Measure solutions of the steady Boltzmann equation in a slab, Comm. Math. Phys. 142 (1991), 285-296. Zbl0733.76063MR1137065
  4. [4] L. Arkeryd – A. Nouri, The stationary Boltzmann equation in the slab with given weighted mass for hard and soft forces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 533-556. Zbl0936.76076MR1677990
  5. [5] L. Arkeryd – A. Nouri, L 1 solutions to the stationary Boltzmann equation in a slab, Ann. Fac. Sci. Toulouse Math. 9 (2000), 375-413. Zbl0991.45005MR1842024
  6. [6] L. Arkeryd – A. Nouri, On the stationary Povzner equation in three space variables, J. Math. Kyoto Univ. 39 (1999), 115-153. Zbl1010.35022MR1684160
  7. [7] L. Arkeryd – A. Nouri, On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model, J. Statist. Phys. 99 (2000), 993-1019. Zbl0959.82022MR1766902
  8. [8] A. V. Bobylev – G. Spiga, On a class of exact two-dimensional stationary solutions for the Broadwell model of the Boltzmann equation, J. Phys. A 27 (1994), 7451-7459. Zbl0844.76084MR1310280
  9. [9] A. V. Bobylev – G. Toscani, Two-dimensional half space problems for the Broadwell discrete velocity model, Contin. Mech. Thermodyn. 8 (1996), 257-274. Zbl0880.76068MR1416192
  10. [10] C. Cercignani – R. Illner – M. Pulvirenti, “The mathematical theory of dilute gases”, Springer-Verlag, Berlin, 1994. Zbl0813.76001MR1307620
  11. [11] C. Cercignani, Measure solutions for the steady nonlinear Boltzmann equation in a slab, Transport Theory Statist. Phys. 27 (1998), 257-271. Zbl0914.76071MR1646503
  12. [12] C. Cercignani – R. Illner – M. Shinbrot, “A boundary value problem for the 2-dimensional Broadwell model”, Comm. Math. Phys. 114 (1985), 687-698. Zbl0668.76091MR929135
  13. [13] C. Cercignani – R. Illner – M. Shinbrot – M. Pulvirenti, On non-linear stationary half-space problems in discrete kinetic theory, J. Statist. Phys. 52 (1988), 885-896. Zbl1084.82561MR968962
  14. [14] C. Cercignani – M. Giurin, Measure solutions for the steady linear Boltzmann equation in a slab, Transport Theory Statist. Phys. 28 (1999), 521-529. Zbl0940.35165MR1705622
  15. [15] H. Cornille, Exact ( 2 + 1 ) -dimensional solutions for two discrete velocity models with two independent densities, J. Phys. A 20 (1987), 1063-1067. MR924710
  16. [16] R. J. DiPerna – P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321-366. Zbl0698.45010MR1014927
  17. [17] R. J. DiPerna – P. L. Lions – Y. Meyer, L p regularity of velocity averages, Anal. Non Lin. 8 (1991), 271-287. Zbl0763.35014MR1127927
  18. [18] L. Falk, Existence of solutions to the stationary linear Boltzmann equation, Thesis, Gothenburg, 2000. Zbl1082.82011
  19. [19] H. Grad, High frequency sound recording according to Boltzmann equation, SIAM J. Appl. Math. 14 (1966), 935-955. Zbl0163.23203MR208969
  20. [20] J. P. Guiraud, Problème aux limites intérieur pour l’équation de Boltzmann en régime stationaire, faiblement non linéaire, J. Méc. Théor. Appl. 11 (1972), 183-231. Zbl0245.76061MR406275
  21. [21] A. Heintz, Solvability of a boundary problem for the non linear Boltzmann equation in a bounded domain, In: “Molecular Gas Dynamics” (in Russian), Aerodynamics of rarefied gases 10, 16-24, Leningrad, 1980. 
  22. [22] R. Illner – J. Struckmeier, Boundary value problems for the steady Boltzmann equation, J. Statist. Phys. 85 (1996), 427-454. Zbl0930.76075MR1413668
  23. [23] N. Maslova, “Non linear evolution equations, Kinetic approach”, Series on Advances in Mathematics for Applied Sciences Vol. 10, World Scientific, 1993. Zbl0846.76002
  24. [24] N. Maslova, The solvability of internal stationary problems for Boltzmann’s equation at large Knudsen numbers, USSR Comp. Math. Math. Phys. 17 (1977), 194-204. Zbl0383.35063MR459451
  25. [25] V. Panferov, “On the existence of stationary solutions to the Povzner equation in a bounded domain”, 2000, submitted. 
  26. [26] Y. P. Pao, Boundary value problems for the linearized and weakly nonlinear Boltzmann equation, J. Math. Phys. 8 (1967), 1893-1898. Zbl0155.32603MR230532
  27. [27] R. Pettersson, On convergence to equilibrium for the linear Boltzmann equation without detailed balance assumptions, Rarefied gas dynamics, Oxford UP, 19 (1995), 107-113. 
  28. [28] L. Triolo, A formal generalization of the H-theorem in kinetic theory, Report, Roma Tor Vergata, 1993. 
  29. [29] S. Ukai, Stationary solutions of the BGK model equation on a finite interval with large boundary data, Transport Theory Statist. Phys. 21 (1992), 487-500. Zbl0791.76076MR1194459
  30. [30] S. Ukai – K. Asano, Steady solutions of the Boltzmann equation for a gas flow past an obstacle; I existence, Arch. Rational Mech. Anal. 84 (1983), 249-291. Zbl0538.76070MR714977

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.