The stationary Boltzmann equation in with given indata
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 2, page 359-385
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topArkeryd, Leif, and Nouri, Anne. "The stationary Boltzmann equation in $\mathbb {R}^n$ with given indata." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.2 (2002): 359-385. <http://eudml.org/doc/84474>.
@article{Arkeryd2002,
abstract = {An $L^1$-existence theorem is proved for the nonlinear stationary Boltzmann equation for soft and hard forces in $\mathbb \{R\}^\{n\}$ with given indata on the boundary, when the collision operator is truncated for small velocities.},
author = {Arkeryd, Leif, Nouri, Anne},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {359-385},
publisher = {Scuola normale superiore},
title = {The stationary Boltzmann equation in $\mathbb \{R\}^n$ with given indata},
url = {http://eudml.org/doc/84474},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Arkeryd, Leif
AU - Nouri, Anne
TI - The stationary Boltzmann equation in $\mathbb {R}^n$ with given indata
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 2
SP - 359
EP - 385
AB - An $L^1$-existence theorem is proved for the nonlinear stationary Boltzmann equation for soft and hard forces in $\mathbb {R}^{n}$ with given indata on the boundary, when the collision operator is truncated for small velocities.
LA - eng
UR - http://eudml.org/doc/84474
ER -
References
top- [1] L. Arkeryd, On the stationary Boltzmann equation in , IMRN 12 (2000), 626-641. Zbl0965.35126MR1772079
- [2] L. Arkeryd – C. Cercignani, On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation, Comm. Partial Differential Equations 14 (1989), 1071-1089. Zbl0688.76053MR1017064
- [3] L. Arkeryd – C. Cercignani – R. Illner, Measure solutions of the steady Boltzmann equation in a slab, Comm. Math. Phys. 142 (1991), 285-296. Zbl0733.76063MR1137065
- [4] L. Arkeryd – A. Nouri, The stationary Boltzmann equation in the slab with given weighted mass for hard and soft forces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 533-556. Zbl0936.76076MR1677990
- [5] L. Arkeryd – A. Nouri, solutions to the stationary Boltzmann equation in a slab, Ann. Fac. Sci. Toulouse Math. 9 (2000), 375-413. Zbl0991.45005MR1842024
- [6] L. Arkeryd – A. Nouri, On the stationary Povzner equation in three space variables, J. Math. Kyoto Univ. 39 (1999), 115-153. Zbl1010.35022MR1684160
- [7] L. Arkeryd – A. Nouri, On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model, J. Statist. Phys. 99 (2000), 993-1019. Zbl0959.82022MR1766902
- [8] A. V. Bobylev – G. Spiga, On a class of exact two-dimensional stationary solutions for the Broadwell model of the Boltzmann equation, J. Phys. A 27 (1994), 7451-7459. Zbl0844.76084MR1310280
- [9] A. V. Bobylev – G. Toscani, Two-dimensional half space problems for the Broadwell discrete velocity model, Contin. Mech. Thermodyn. 8 (1996), 257-274. Zbl0880.76068MR1416192
- [10] C. Cercignani – R. Illner – M. Pulvirenti, “The mathematical theory of dilute gases”, Springer-Verlag, Berlin, 1994. Zbl0813.76001MR1307620
- [11] C. Cercignani, Measure solutions for the steady nonlinear Boltzmann equation in a slab, Transport Theory Statist. Phys. 27 (1998), 257-271. Zbl0914.76071MR1646503
- [12] C. Cercignani – R. Illner – M. Shinbrot, “A boundary value problem for the 2-dimensional Broadwell model”, Comm. Math. Phys. 114 (1985), 687-698. Zbl0668.76091MR929135
- [13] C. Cercignani – R. Illner – M. Shinbrot – M. Pulvirenti, On non-linear stationary half-space problems in discrete kinetic theory, J. Statist. Phys. 52 (1988), 885-896. Zbl1084.82561MR968962
- [14] C. Cercignani – M. Giurin, Measure solutions for the steady linear Boltzmann equation in a slab, Transport Theory Statist. Phys. 28 (1999), 521-529. Zbl0940.35165MR1705622
- [15] H. Cornille, Exact -dimensional solutions for two discrete velocity models with two independent densities, J. Phys. A 20 (1987), 1063-1067. MR924710
- [16] R. J. DiPerna – P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321-366. Zbl0698.45010MR1014927
- [17] R. J. DiPerna – P. L. Lions – Y. Meyer, regularity of velocity averages, Anal. Non Lin. 8 (1991), 271-287. Zbl0763.35014MR1127927
- [18] L. Falk, Existence of solutions to the stationary linear Boltzmann equation, Thesis, Gothenburg, 2000. Zbl1082.82011
- [19] H. Grad, High frequency sound recording according to Boltzmann equation, SIAM J. Appl. Math. 14 (1966), 935-955. Zbl0163.23203MR208969
- [20] J. P. Guiraud, Problème aux limites intérieur pour l’équation de Boltzmann en régime stationaire, faiblement non linéaire, J. Méc. Théor. Appl. 11 (1972), 183-231. Zbl0245.76061MR406275
- [21] A. Heintz, Solvability of a boundary problem for the non linear Boltzmann equation in a bounded domain, In: “Molecular Gas Dynamics” (in Russian), Aerodynamics of rarefied gases 10, 16-24, Leningrad, 1980.
- [22] R. Illner – J. Struckmeier, Boundary value problems for the steady Boltzmann equation, J. Statist. Phys. 85 (1996), 427-454. Zbl0930.76075MR1413668
- [23] N. Maslova, “Non linear evolution equations, Kinetic approach”, Series on Advances in Mathematics for Applied Sciences Vol. 10, World Scientific, 1993. Zbl0846.76002
- [24] N. Maslova, The solvability of internal stationary problems for Boltzmann’s equation at large Knudsen numbers, USSR Comp. Math. Math. Phys. 17 (1977), 194-204. Zbl0383.35063MR459451
- [25] V. Panferov, “On the existence of stationary solutions to the Povzner equation in a bounded domain”, 2000, submitted.
- [26] Y. P. Pao, Boundary value problems for the linearized and weakly nonlinear Boltzmann equation, J. Math. Phys. 8 (1967), 1893-1898. Zbl0155.32603MR230532
- [27] R. Pettersson, On convergence to equilibrium for the linear Boltzmann equation without detailed balance assumptions, Rarefied gas dynamics, Oxford UP, 19 (1995), 107-113.
- [28] L. Triolo, A formal generalization of the H-theorem in kinetic theory, Report, Roma Tor Vergata, 1993.
- [29] S. Ukai, Stationary solutions of the BGK model equation on a finite interval with large boundary data, Transport Theory Statist. Phys. 21 (1992), 487-500. Zbl0791.76076MR1194459
- [30] S. Ukai – K. Asano, Steady solutions of the Boltzmann equation for a gas flow past an obstacle; I existence, Arch. Rational Mech. Anal. 84 (1983), 249-291. Zbl0538.76070MR714977
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.