H functional calculus for an elliptic operator on a half-space with general boundary conditions

Giovanni Dore; Alberto Venni

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 3, page 487-543
  • ISSN: 0391-173X

Abstract

top
Let A be the L p realization ( 1 < p < ) of a differential operator P ( D x , D t ) on n × + with general boundary conditions B k ( D x , D t ) u ( x , 0 ) = 0 ( 1 k m ). Here P is a homogeneous polynomial of order 2 m in n + 1 complex variables that satisfies a suitable ellipticity condition, and for 1 k m B k is a homogeneous polynomial of order m k < 2 m ; it is assumed that the usual complementing condition is satisfied. We prove that A is a sectorial operator with a bounded H functional calculus.

How to cite

top

Dore, Giovanni, and Venni, Alberto. "$H^\infty $ functional calculus for an elliptic operator on a half-space with general boundary conditions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3 (2002): 487-543. <http://eudml.org/doc/84479>.

@article{Dore2002,
abstract = {Let $A$ be the $L^p$ realization ($1&lt;p&lt;\infty $) of a differential operator $P(D_x,D_t)$ on $\mathbb \{R\}^n\times \mathbb \{R\}^+$ with general boundary conditions $B_k(D_x,D_t)u(x,0)=0$ ($1\le k\le m$). Here $P$ is a homogeneous polynomial of order $2m$ in $n+1$ complex variables that satisfies a suitable ellipticity condition, and for $1\le k\le m$$B_k$ is a homogeneous polynomial of order $m_k&lt;2m$; it is assumed that the usual complementing condition is satisfied. We prove that $A$ is a sectorial operator with a bounded $H^\infty $ functional calculus.},
author = {Dore, Giovanni, Venni, Alberto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-maximal regularity; Cauchy problem; elliptic differential operator with constant coefficients},
language = {eng},
number = {3},
pages = {487-543},
publisher = {Scuola normale superiore},
title = {$H^\infty $ functional calculus for an elliptic operator on a half-space with general boundary conditions},
url = {http://eudml.org/doc/84479},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Dore, Giovanni
AU - Venni, Alberto
TI - $H^\infty $ functional calculus for an elliptic operator on a half-space with general boundary conditions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 3
SP - 487
EP - 543
AB - Let $A$ be the $L^p$ realization ($1&lt;p&lt;\infty $) of a differential operator $P(D_x,D_t)$ on $\mathbb {R}^n\times \mathbb {R}^+$ with general boundary conditions $B_k(D_x,D_t)u(x,0)=0$ ($1\le k\le m$). Here $P$ is a homogeneous polynomial of order $2m$ in $n+1$ complex variables that satisfies a suitable ellipticity condition, and for $1\le k\le m$$B_k$ is a homogeneous polynomial of order $m_k&lt;2m$; it is assumed that the usual complementing condition is satisfied. We prove that $A$ is a sectorial operator with a bounded $H^\infty $ functional calculus.
LA - eng
KW - -maximal regularity; Cauchy problem; elliptic differential operator with constant coefficients
UR - http://eudml.org/doc/84479
ER -

References

top
  1. [1] S. Agmon – A. Douglis – L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. Zbl0093.10401MR125307
  2. [2] M. S. Agranovich – M. I. Vishik, Elliptic problems with a parameter and parabolic problems of general type, (Russian), Uspehi Mat. Nauk 19 n. 3 (1964), 53-161; translated in: Russian Math. Surveys 19 n. 3 (1964), 53-157. Zbl0137.29602MR192188
  3. [3] H. Amann – M. Hieber – G. Simonett, Bounded H -calculus for elliptic operators, Differential Integral Equations 7 (1994), 613-653. Zbl0799.35060MR1270095
  4. [4] W. Arendt – A. F. M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory 38 (1997), 87-130. Zbl0879.35041MR1462017
  5. [5] M. Cowling – I. Doust – A. McIntosh – A. Yagi, Banach space operators with a bounded H functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), 51-89. Zbl0853.47010MR1364554
  6. [6] J. Diestel – H. Jarchow – A. Tonge, “Absolutely Summing Operators”, Cambridge Studies in Advanced Mathematics vol. 43, Cambridge University Press, Cambridge, 1995. Zbl0855.47016MR1342297
  7. [7] G. Dore – A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201. Zbl0615.47002MR910825
  8. [8] G. Dore – A. Venni, H functional calculus for sectorial and bisectorial operators, preprint. Zbl1097.47017MR2110093
  9. [9] N. Dunford – J. T. Schwartz, “Linear Operators. Part I”, Pure and Applied Mathematics vol. 7, Interscience Publishers, New York, 1958. Zbl0084.10402MR117523
  10. [10] X. T. Duong, H functional calculus of elliptic operators with C coefficients on L p spaces of smooth domains, J. Austral. Math. Soc. Ser. A 48 (1990), 113-123. Zbl0708.35029MR1026842
  11. [11] X. T. Duong, H functional calculus of second order elliptic partial differential operators on L p spaces, In: “Miniconference on Operators in Analysis (Sydney, 1989)”, I. Doust – B. Jefferies – C. Li – A. McIntosh (eds.), Proc. Centre Math. Anal. A.N.U. vol. 24, A.N.U., Canberra, 1990, pp. 91-102. Zbl0709.47015MR1060114
  12. [12] X. T. Duong – A. McIntosh, Functional calculi of second-order elliptic partial differential operators with bounded measurable coefficients, J. Geom. Anal. 6 (1996), 181-205. Zbl0897.47041MR1469121
  13. [13] X. T. Duong – E. M. Ouahabaz, Complex multiplicative perturbations of elliptic operators: heat kernel bounds and holomorphic functional calculus, Differential Integral Equations 12 (1999), 395-418. Zbl1008.47020MR1674426
  14. [14] X. T. Duong – G. Simonett, H -calculus for elliptic operators with nonsmooth coefficients, Differential Integral Equations 10 (1997), 201-217. Zbl0892.47017MR1424807
  15. [15] E. Franks – A. McIntosh, Discrete quadratic estimates and holomorphic functional calculi in Banach spaces, Bull. Austral. Math. Soc. 58 (1998), 271-290. Zbl0942.47011MR1642055
  16. [16] Y. Giga – H. Sohr, Abstract L p -estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal. 102 (1991), 72-94. Zbl0739.35067MR1138838
  17. [17] G. H. Hardy – J. E. Littlewood – G. Pólya, “Inequalities”, Cambridge University Press, Cambridge, 1934. Zbl0010.10703JFM60.0169.01
  18. [18] M. Hieber – J. Prüss, Functional calculi for linear operators in vector-valued L p -spaces via the transference principle, Adv. Differential Equations 3 (1998), 847-872. Zbl0956.47008MR1659281
  19. [19] N. J. Kalton – L. Weis, The H -calculus and sums of closed operators, Math. Ann. 321 (2001) 319-345. Zbl0992.47005MR1866491
  20. [20] F. Lancien – G. Lancien – C. Le Merdy, A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc. (3) 77 (1998), 387-414. Zbl0904.47015MR1635157
  21. [21] A. McIntosh – A. Nahmod, Heat kernel estimates and functional calculi of - b Δ , Math. Scand. 87 (2000), 287-319. Zbl1069.35023MR1795749
  22. [22] J. Prüss – H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452. Zbl0665.47015MR1038710
  23. [23] J. Prüss – H. Sohr, Imaginary powers of elliptic second order differential operators in L p -spaces, Hiroshima Math. J. 23 (1991), 161-192. Zbl0790.35023MR1211773
  24. [24] R. T. Seeley, Complex powers of an elliptic operator, In: “Singular Integrals (Chicago, 1966)”, Proc. Simpos. Pure Math. vol. 10, American Mathematical Society, Providence, 1967, pp. 288-307. Zbl0159.15504MR237943
  25. [25] R. T. Seeley, The resolvent of an elliptic boundary problem, Amer. J. Math. 91 (1969), 889-920. Zbl0191.11801MR265764
  26. [26] R. T. Seeley, Norms and domains of the complex powers A B z , Amer. J. Math. 93 (1971), 299-309. Zbl0218.35034MR287376
  27. [27] H. Sohr – G. Thäter, Imaginary powers of second order differential operators and L q -Helmholtz decomposition in the infinite cylinder, Math. Ann. 311 (1998), 577-602. Zbl0911.35088MR1637935
  28. [28] V. A. Solonnikov, On general boundary problems for systems which are elliptic in the sense of A. Douglis and L. Nirenberg. I, (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 665-706; translated in: Amer. Math. Soc. Transl. Ser. 2 56 (1966), 193-232. Zbl0175.11703MR211070
  29. [29] Ž. Štrkalj – L. Weis, On operator-valued Fourier multiplier theorems, preprint. Zbl1209.42005
  30. [30] H. Triebel, “Interpolation Theory, Function Spaces, Differential Operators”, North-Holland Mathematical Library vol. 18, North-Holland Publishing Co., Amsterdam, 1978. Zbl0387.46032MR503903
  31. [31] A. Venni, Marcinkiewicz and Mihlin multiplier theorems, and R-boundedness, preprint. Zbl1031.43002MR2013204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.