-graded Lie superalgebras of infinite depth and finite growth

Nicoletta Cantarini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 3, page 545-568
  • ISSN: 0391-173X

Abstract

top
In 1998 Victor Kac classified infinite-dimensional -graded Lie superalgebras of finite depth. We construct new examples of infinite-dimensional Lie superalgebras with a -gradation of infinite depth and finite growth and classify -graded Lie superalgebras of infinite depth and finite growth under suitable hypotheses.

How to cite

top

Cantarini, Nicoletta. "$\mathbb {Z}$-graded Lie superalgebras of infinite depth and finite growth." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3 (2002): 545-568. <http://eudml.org/doc/84480>.

@article{Cantarini2002,
abstract = {In 1998 Victor Kac classified infinite-dimensional $\mathbb \{Z\}$-graded Lie superalgebras of finite depth. We construct new examples of infinite-dimensional Lie superalgebras with a $\mathbb \{Z\}$-gradation of infinite depth and finite growth and classify $\mathbb \{Z\}$-graded Lie superalgebras of infinite depth and finite growth under suitable hypotheses.},
author = {Cantarini, Nicoletta},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {545-568},
publisher = {Scuola normale superiore},
title = {$\mathbb \{Z\}$-graded Lie superalgebras of infinite depth and finite growth},
url = {http://eudml.org/doc/84480},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Cantarini, Nicoletta
TI - $\mathbb {Z}$-graded Lie superalgebras of infinite depth and finite growth
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 3
SP - 545
EP - 568
AB - In 1998 Victor Kac classified infinite-dimensional $\mathbb {Z}$-graded Lie superalgebras of finite depth. We construct new examples of infinite-dimensional Lie superalgebras with a $\mathbb {Z}$-gradation of infinite depth and finite growth and classify $\mathbb {Z}$-graded Lie superalgebras of infinite depth and finite growth under suitable hypotheses.
LA - eng
UR - http://eudml.org/doc/84480
ER -

References

top
  1. [H] J. E. Humphreys, “Introduction to Lie Algebras and Representation Theory”, Graduate Texts in Mathematics, 9. Springer-Verlag, New York-Berlin, 1978. Zbl0447.17001MR499562
  2. [K1] V. G. Kac, Simple Irreducible Graded Lie Algebras of Finite Growth, Math. USSR - Izvestija, Vol 2, 6 (1968). Zbl0222.17007MR259961
  3. [K2] V. G. Kac, Lie Superalgebras, Adv. Math. 26 (1977), 8-96. Zbl0366.17012MR486011
  4. [K3] V. G. Kac, Classification of Infinite-Dimensional Simple Linearly Compact Lie Superalgebras, Adv. Math. 139 (1998), 1-55. Zbl0929.17026MR1652530
  5. [K4] V. G. Kac, “Infinite Dimensional Lie Algebras”, Cambridge University Press, Boston, 1990. Zbl0716.17022MR1104219
  6. [M] O. Mathieu, Classification of Simple Graded Lie Algebras of Finite Growth, Invent. Math. 108 (1992), 455-519. Zbl0769.17018MR1163236
  7. [OV] A. L. Onishchik – E. B. Vinberg, “Lie Groups and Algebraic Groups”, Springer-Verlag, New York-Berlin, 1990. Zbl0722.22004MR1064110
  8. [vdL] J. W. van de Leur, A Classification of Contragredient Lie Superalgebras, Comm. Algebra 17 (1989), 1815-1841. Zbl0685.17013MR1013470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.