The Calderón-Zygmund theorem and parabolic equations in L P ( , C 2 + α ) -spaces

Nicolai V. Krylov

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 4, page 799-820
  • ISSN: 0391-173X

Abstract

top
A Banach-space version of the Calderón-Zygmund theorem is presented and applied to obtaining apriori estimates for solutions of second-order parabolic equations in L p ( , C 2 + α ) -spaces.

How to cite

top

Krylov, Nicolai V.. "The Calderón-Zygmund theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.4 (2002): 799-820. <http://eudml.org/doc/84487>.

@article{Krylov2002,
abstract = {A Banach-space version of the Calderón-Zygmund theorem is presented and applied to obtaining apriori estimates for solutions of second-order parabolic equations in $L_\{p\}(\mathbb \{R\},C^\{2+\alpha \})$-spaces.},
author = {Krylov, Nicolai V.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {799-820},
publisher = {Scuola normale superiore},
title = {The Calderón-Zygmund theorem and parabolic equations in $L P (\mathbb \{R\}, C^\{2+\alpha \})$-spaces},
url = {http://eudml.org/doc/84487},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Krylov, Nicolai V.
TI - The Calderón-Zygmund theorem and parabolic equations in $L P (\mathbb {R}, C^{2+\alpha })$-spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 4
SP - 799
EP - 820
AB - A Banach-space version of the Calderón-Zygmund theorem is presented and applied to obtaining apriori estimates for solutions of second-order parabolic equations in $L_{p}(\mathbb {R},C^{2+\alpha })$-spaces.
LA - eng
UR - http://eudml.org/doc/84487
ER -

References

top
  1. [1] A. Brandt, Interior Schauder estimates for parabolic differential- (or difference- ) equations via the maximum principle, Israel J. Math. 7 (1969), 254-262. Zbl0184.32304MR249803
  2. [2] B. F. Jones, A class of singular integrals, Amer. J. Math. 86 (1964), 441-462. Zbl0123.08501MR161099
  3. [3] B. Knerr, Parabolic interior Schauder estimates by the maximum principle, Arch. Rational Mech. Anal. 75 (1980), 51-58. Zbl0468.35014MR592103
  4. [4] N. V. Krylov, A parabolic Littlewood-Paley inequality with applications to parabolic equations, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 4 (1994), 355-364. Zbl0839.35017MR1350977
  5. [5] N. V. Krylov, “Lectures on elliptic and parabolic equations in Hölder spaces”, Amer. Math. Soc., Providence, RI, 1996. Zbl0865.35001MR1406091
  6. [6] N. V. Krylov, The heat equation in L q ( ( 0 , T ) , L p ) -spaces with weights, SIAM J. Math. Anal. 32 (2001), 117-1141. Zbl0979.35060MR1828321
  7. [7] N. V. Krylov, On the Calderón-Zygmund theorem with applications to parabolic equations, Algebra i Analiz 13 (2001), 1-25, in Russian; English translation in St Petersburg Math. J. 13 (2002), 509-526. Zbl1011.35033MR1865493
  8. [8] N. V. Krylov, Parabolic equations in L p -spaces with mixed norms, to appear in Algebra i Analiz. Zbl1032.35046
  9. [9] L. Lorenzi, Optimal Schauder estimates for parabolic problems with data measurable with respect to time, SIAM J. Math. Anal. 32 (2000), 588-615. Zbl0974.35018MR1786159
  10. [10] A. Lunardi, An interpolation method to characterize domains of generators of semigroups, Semigroup Forum 53 (1996), 321-329. Zbl0859.47030MR1406778
  11. [11] E. M. Stein, “Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals”, Princeton Univ. Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.