On q -Runge pairs

Mihnea Colţoiu

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 2, page 231-235
  • ISSN: 0391-173X

Abstract

top
We show that the converse of the aproximation theorem of Andreotti and Grauert does not hold. More precisely we construct a 4 -complete open subset D 6 (which is an analytic complement in the unit ball) such that the restriction map H 3 ( 6 , ) H 3 ( D , ) has a dense image for every C o h ( 6 ) but the pair ( D , 6 ) is not a 4 -Runge pair.

How to cite

top

Colţoiu, Mihnea. "On $q$-Runge pairs." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.2 (2003): 231-235. <http://eudml.org/doc/84501>.

@article{Colţoiu2003,
abstract = {We show that the converse of the aproximation theorem of Andreotti and Grauert does not hold. More precisely we construct a $4$-complete open subset $D \subset \mathbb \{C\}^6$ (which is an analytic complement in the unit ball) such that the restriction map $H^3(\mathbb \{C\}^6,\mathcal \{F\}) \rightarrow H^3(D, \mathcal \{F\})$ has a dense image for every $\mathcal \{F\} \in Coh(\mathbb \{C\}^6)$ but the pair $(D, \mathbb \{C\}^6)$ is not a $4$-Runge pair.},
author = {Colţoiu, Mihnea},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {231-235},
publisher = {Scuola normale superiore},
title = {On $q$-Runge pairs},
url = {http://eudml.org/doc/84501},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Colţoiu, Mihnea
TI - On $q$-Runge pairs
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 2
SP - 231
EP - 235
AB - We show that the converse of the aproximation theorem of Andreotti and Grauert does not hold. More precisely we construct a $4$-complete open subset $D \subset \mathbb {C}^6$ (which is an analytic complement in the unit ball) such that the restriction map $H^3(\mathbb {C}^6,\mathcal {F}) \rightarrow H^3(D, \mathcal {F})$ has a dense image for every $\mathcal {F} \in Coh(\mathbb {C}^6)$ but the pair $(D, \mathbb {C}^6)$ is not a $4$-Runge pair.
LA - eng
UR - http://eudml.org/doc/84501
ER -

References

top
  1. [A-G] A. Andreotti – H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. Zbl0106.05501MR150342
  2. [Ba] W. Barth, Lokale Cohomologie bei isolierten Singulatitäten analytischer Mengen, Schriftenreihe Math. Inst. Univ. Münster (2) 5 (1971), 59 pp. Zbl0231.32005MR302936
  3. [Col] M. Colţoiu, q -convexity. A survey, In: “Complex analysis and geometry XII”, Pitman Research Notes in Math. 366 (1987), 83-93. Zbl0883.32016MR1477441
  4. [Col1] M. Colţoiu, On the relative homology of q -Runge pairs, Ark. Math. 38 (2000), 45-52. Zbl1039.32016MR1749357
  5. [Co-Sil] M. Colţoiu – A. Silva, Behnke-Stein theorem on complex spaces with singularities, Nagoya Math. J. 137 (1995), 183-194. Zbl0820.32007MR1324548
  6. [Fo] G. Forni, Homology and cohomology with compact supports for q -convex spaces, Ann. Mat. Pura Appl. (4) 159 (1991), 229-254. Zbl0758.32008MR1145099
  7. [Gra] H. Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460-472. Zbl0108.07804MR98847
  8. [Gre] M. Greenberg, “Lectures on algebraic topology”, W.A. Benjamin, New-York, 1967. Zbl0169.54403MR215295
  9. [Pr] D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375-386. Zbl0179.12301MR210944
  10. [So] G. Sorani, Homologie des q -paires de Runge, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 319-332. Zbl0126.09701MR165143
  11. [Va] V. Vajaitu, Approximations theorems and homology of q -Runge domains, J. Reine Angew. Math. 449 (1994), 179-199. Zbl0795.32004MR1268585

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.