Quadratic tilt-excess decay and strong maximum principle for varifolds

Reiner Schätzle[1]

  • [1] Mathematisches Institut Rheinischen Friedrich-Wilhelms-Universität Bonn Beringstraße 6, D-53115 Bonn, Germany

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 1, page 171-231
  • ISSN: 0391-173X

Abstract

top
In this paper, we prove that integral n -varifolds μ in codimension 1 with H μ L loc p ( μ ) , p > n , p 2 have quadratic tilt-excess decay tiltex μ ( x , ϱ , T x μ ) = O x ( ϱ 2 ) for μ -almost all x , and a strong maximum principle which states that these varifolds cannot be touched by smooth manifolds whose mean curvature is given by the weak mean curvature H μ , unless the smooth manifold is locally contained in the support of μ .

How to cite

top

Schätzle, Reiner. "Quadratic tilt-excess decay and strong maximum principle for varifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (2004): 171-231. <http://eudml.org/doc/84524>.

@article{Schätzle2004,
abstract = {In this paper, we prove that integral $n$-varifolds $\mu $ in codimension 1 with $H_\mu \in L^p_\{\mathrm \{loc\}\nolimits \} (\mu )$, $p &gt; n$, $p \ge 2$ have quadratic tilt-excess decay $\mathrm \{tiltex\}_\mu (x,\varrho ,T_x \mu ) = O_x(\varrho ^2)$for $\mu $-almost all $x$, and a strong maximum principle which states that these varifolds cannot be touched by smooth manifolds whose mean curvature is given by the weak mean curvature $H_\mu $, unless the smooth manifold is locally contained in the support of $\mu $.},
affiliation = {Mathematisches Institut Rheinischen Friedrich-Wilhelms-Universität Bonn Beringstraße 6, D-53115 Bonn, Germany},
author = {Schätzle, Reiner},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {varifolds; strong maximum principle},
language = {eng},
number = {1},
pages = {171-231},
publisher = {Scuola Normale Superiore, Pisa},
title = {Quadratic tilt-excess decay and strong maximum principle for varifolds},
url = {http://eudml.org/doc/84524},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Schätzle, Reiner
TI - Quadratic tilt-excess decay and strong maximum principle for varifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 1
SP - 171
EP - 231
AB - In this paper, we prove that integral $n$-varifolds $\mu $ in codimension 1 with $H_\mu \in L^p_{\mathrm {loc}\nolimits } (\mu )$, $p &gt; n$, $p \ge 2$ have quadratic tilt-excess decay $\mathrm {tiltex}_\mu (x,\varrho ,T_x \mu ) = O_x(\varrho ^2)$for $\mu $-almost all $x$, and a strong maximum principle which states that these varifolds cannot be touched by smooth manifolds whose mean curvature is given by the weak mean curvature $H_\mu $, unless the smooth manifold is locally contained in the support of $\mu $.
LA - eng
KW - varifolds; strong maximum principle
UR - http://eudml.org/doc/84524
ER -

References

top
  1. [All72] W. K. Allard, On the first variation of a varifold, Ann. of Math. 95 (1972), 417-491. Zbl0252.49028MR307015
  2. [Bra78] K. Brakke, “The motion of a surface by its mean curvature”, Princeton University Press, 1978. Zbl0386.53047MR485012
  3. [Cab00] X. Cabré, oral communication. 
  4. [Caf89] L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1989), 189-213. Zbl0692.35017MR1005611
  5. [CafCab] L. A. Caffarelli – X. Cabré, “Fully Nonlinear Elliptic equations”, American Mathematical Society, 1996. Zbl0834.35002MR1351007
  6. [CafCKS96] L. A. Caffarelli – M. G. Crandall – M. Kocan – A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49, (1996), 365-397. Zbl0854.35032MR1376656
  7. [CIL] M. G. Crandall – H. Ishii – P.-L. Lions, User’s Guide to Viscosity Solutions of second Order Partial Differential Equations, Bull. Amer. Math. Soc. 27 (1992), 1-67. Zbl0755.35015MR1118699
  8. [DuSt94] F. Duzaar – K. Steffen, Comparison principles for hypersurfaces of prescribed mean curvature, J. Reine Angew. Math. 457 (1994), 71-83. Zbl0820.53007MR1305279
  9. [Es93] L. Escauriaza, W 2 , n apriori estimates for solutions of fully non-linear equations, Indiana Univ. Math. J. 42 (1993), 413-423. Zbl0792.35020MR1237053
  10. [Ev82] L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), 333-363. Zbl0469.35022MR649348
  11. [F] H. Federer, “Geometric Measure Theory”, Springer Verlag, Grund. Math. Wiss., Band 153, Berlin - Heidelberg - New York, 1969. Zbl0176.00801MR257325
  12. [GT] D. Gilbarg – N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Springer Verlag, Berlin - Heidelberg - New York - Tokyo 1983. Zbl0361.35003MR737190
  13. [Il96] T. Ilmanen, A strong maximum principle for singular minimal hypersurfaces, Calc. Var. Partial Differential Equations, 4 (1996), 443-467. Zbl0863.49030MR1402732
  14. [Kry83] N. V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations, Math. USSR Izv. 20 (1983), 459-492. Zbl0529.35026
  15. [Mo77] M. P. Moschen, Principio di Massimo Forte per le Frontiere di Misura Minima, Ann. Univ. Ferrara, Sez. VII - Sc. Mat. 23 (1977), 165-168. Zbl0384.49030MR482508
  16. [Resh68] Y. G. Reshetnyak, Generalized derivatives and differentiability almost everywhere, Math. USSR-Sb. 4 (1968), 293-302. Zbl0176.12001
  17. [Sch01] R. Schätzle, Hypersurfaces with mean curvature given an ambient Sobolev function, J. Differential Geom. 58 (2001), 371-420. Zbl1055.49032MR1906780
  18. [Sim] L. Simon, “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis Australian National University, Volume 3, 1983. Zbl0546.49019MR756417
  19. [Sim87] L. Simon, A strict maximum principle for area minimizing hypersurfaces, J. Differential Geom. 26 (1987), 327-335. Zbl0625.53052MR906394
  20. [SW89] B. Solomon – B. White, A Strong Maximum Principle for Varifolds that are Stationary with Respect to Even Parametric Elliptic Functionals, Indiana Univ. Math. J. 38 (1989), 683-691. Zbl0711.49059MR1017330
  21. [T89] N. S. Trudinger, On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Austral. Math. Soc. 39 (1989), 443-447. Zbl0706.35031MR995142
  22. [Wa92] L. Wang, On the regularity theory of fully nonlinear parabolic equations I, Comm. Pure Appl. Math. 45 (1992), 27-76. Zbl0832.35025MR1135923
  23. [Wh34] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. Zbl0008.24902MR1501735
  24. [Wi04] N. Winter, “ W 2 , p -Randabschätzungen für Lösungen von voll nicht-linearen elliptischen Gleichungen”, diploma thesis, 2004. 
  25. [Zie] W. Ziemer, “Weakly Differentiable Functions”, Springer Verlag, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.