Quadratic tilt-excess decay and strong maximum principle for varifolds
- [1] Mathematisches Institut Rheinischen Friedrich-Wilhelms-Universität Bonn Beringstraße 6, D-53115 Bonn, Germany
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 1, page 171-231
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topSchätzle, Reiner. "Quadratic tilt-excess decay and strong maximum principle for varifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (2004): 171-231. <http://eudml.org/doc/84524>.
@article{Schätzle2004,
abstract = {In this paper, we prove that integral $n$-varifolds $\mu $ in codimension 1 with $H_\mu \in L^p_\{\mathrm \{loc\}\nolimits \} (\mu )$, $p > n$, $p \ge 2$ have quadratic tilt-excess decay $\mathrm \{tiltex\}_\mu (x,\varrho ,T_x \mu ) = O_x(\varrho ^2)$for $\mu $-almost all $x$, and a strong maximum principle which states that these varifolds cannot be touched by smooth manifolds whose mean curvature is given by the weak mean curvature $H_\mu $, unless the smooth manifold is locally contained in the support of $\mu $.},
affiliation = {Mathematisches Institut Rheinischen Friedrich-Wilhelms-Universität Bonn Beringstraße 6, D-53115 Bonn, Germany},
author = {Schätzle, Reiner},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {varifolds; strong maximum principle},
language = {eng},
number = {1},
pages = {171-231},
publisher = {Scuola Normale Superiore, Pisa},
title = {Quadratic tilt-excess decay and strong maximum principle for varifolds},
url = {http://eudml.org/doc/84524},
volume = {3},
year = {2004},
}
TY - JOUR
AU - Schätzle, Reiner
TI - Quadratic tilt-excess decay and strong maximum principle for varifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 1
SP - 171
EP - 231
AB - In this paper, we prove that integral $n$-varifolds $\mu $ in codimension 1 with $H_\mu \in L^p_{\mathrm {loc}\nolimits } (\mu )$, $p > n$, $p \ge 2$ have quadratic tilt-excess decay $\mathrm {tiltex}_\mu (x,\varrho ,T_x \mu ) = O_x(\varrho ^2)$for $\mu $-almost all $x$, and a strong maximum principle which states that these varifolds cannot be touched by smooth manifolds whose mean curvature is given by the weak mean curvature $H_\mu $, unless the smooth manifold is locally contained in the support of $\mu $.
LA - eng
KW - varifolds; strong maximum principle
UR - http://eudml.org/doc/84524
ER -
References
top- [All72] W. K. Allard, On the first variation of a varifold, Ann. of Math. 95 (1972), 417-491. Zbl0252.49028MR307015
- [Bra78] K. Brakke, “The motion of a surface by its mean curvature”, Princeton University Press, 1978. Zbl0386.53047MR485012
- [Cab00] X. Cabré, oral communication.
- [Caf89] L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1989), 189-213. Zbl0692.35017MR1005611
- [CafCab] L. A. Caffarelli – X. Cabré, “Fully Nonlinear Elliptic equations”, American Mathematical Society, 1996. Zbl0834.35002MR1351007
- [CafCKS96] L. A. Caffarelli – M. G. Crandall – M. Kocan – A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49, (1996), 365-397. Zbl0854.35032MR1376656
- [CIL] M. G. Crandall – H. Ishii – P.-L. Lions, User’s Guide to Viscosity Solutions of second Order Partial Differential Equations, Bull. Amer. Math. Soc. 27 (1992), 1-67. Zbl0755.35015MR1118699
- [DuSt94] F. Duzaar – K. Steffen, Comparison principles for hypersurfaces of prescribed mean curvature, J. Reine Angew. Math. 457 (1994), 71-83. Zbl0820.53007MR1305279
- [Es93] L. Escauriaza, apriori estimates for solutions of fully non-linear equations, Indiana Univ. Math. J. 42 (1993), 413-423. Zbl0792.35020MR1237053
- [Ev82] L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), 333-363. Zbl0469.35022MR649348
- [F] H. Federer, “Geometric Measure Theory”, Springer Verlag, Grund. Math. Wiss., Band 153, Berlin - Heidelberg - New York, 1969. Zbl0176.00801MR257325
- [GT] D. Gilbarg – N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order”, Springer Verlag, Berlin - Heidelberg - New York - Tokyo 1983. Zbl0361.35003MR737190
- [Il96] T. Ilmanen, A strong maximum principle for singular minimal hypersurfaces, Calc. Var. Partial Differential Equations, 4 (1996), 443-467. Zbl0863.49030MR1402732
- [Kry83] N. V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations, Math. USSR Izv. 20 (1983), 459-492. Zbl0529.35026
- [Mo77] M. P. Moschen, Principio di Massimo Forte per le Frontiere di Misura Minima, Ann. Univ. Ferrara, Sez. VII - Sc. Mat. 23 (1977), 165-168. Zbl0384.49030MR482508
- [Resh68] Y. G. Reshetnyak, Generalized derivatives and differentiability almost everywhere, Math. USSR-Sb. 4 (1968), 293-302. Zbl0176.12001
- [Sch01] R. Schätzle, Hypersurfaces with mean curvature given an ambient Sobolev function, J. Differential Geom. 58 (2001), 371-420. Zbl1055.49032MR1906780
- [Sim] L. Simon, “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis Australian National University, Volume 3, 1983. Zbl0546.49019MR756417
- [Sim87] L. Simon, A strict maximum principle for area minimizing hypersurfaces, J. Differential Geom. 26 (1987), 327-335. Zbl0625.53052MR906394
- [SW89] B. Solomon – B. White, A Strong Maximum Principle for Varifolds that are Stationary with Respect to Even Parametric Elliptic Functionals, Indiana Univ. Math. J. 38 (1989), 683-691. Zbl0711.49059MR1017330
- [T89] N. S. Trudinger, On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Austral. Math. Soc. 39 (1989), 443-447. Zbl0706.35031MR995142
- [Wa92] L. Wang, On the regularity theory of fully nonlinear parabolic equations I, Comm. Pure Appl. Math. 45 (1992), 27-76. Zbl0832.35025MR1135923
- [Wh34] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. Zbl0008.24902MR1501735
- [Wi04] N. Winter, “-Randabschätzungen für Lösungen von voll nicht-linearen elliptischen Gleichungen”, diploma thesis, 2004.
- [Zie] W. Ziemer, “Weakly Differentiable Functions”, Springer Verlag, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.