A geometric application of Nori’s connectivity theorem

Claire Voisin[1]

  • [1] Institut de mathématiques de Jussieu CNRS,UMR 7586

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 3, page 637-656
  • ISSN: 0391-173X

Abstract

top
We study (rational) sweeping out of general hypersurfaces by varieties having small moduli spaces. As a consequence, we show that general K -trivial hypersurfaces are not rationally swept out by abelian varieties of dimension at least two. As a corollary, we show that Clemens’ conjecture on the finiteness of rational curves of given degree in a general quintic threefold, and Lang’s conjecture saying that such varieties should be rationally swept-out by abelian varieties, contradict.

How to cite

top

Voisin, Claire. "A geometric application of Nori’s connectivity theorem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (2004): 637-656. <http://eudml.org/doc/84544>.

@article{Voisin2004,
abstract = {We study (rational) sweeping out of general hypersurfaces by varieties having small moduli spaces. As a consequence, we show that general $K$-trivial hypersurfaces are not rationally swept out by abelian varieties of dimension at least two. As a corollary, we show that Clemens’ conjecture on the finiteness of rational curves of given degree in a general quintic threefold, and Lang’s conjecture saying that such varieties should be rationally swept-out by abelian varieties, contradict.},
affiliation = {Institut de mathématiques de Jussieu CNRS,UMR 7586},
author = {Voisin, Claire},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {637-656},
publisher = {Scuola Normale Superiore, Pisa},
title = {A geometric application of Nori’s connectivity theorem},
url = {http://eudml.org/doc/84544},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Voisin, Claire
TI - A geometric application of Nori’s connectivity theorem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 3
SP - 637
EP - 656
AB - We study (rational) sweeping out of general hypersurfaces by varieties having small moduli spaces. As a consequence, we show that general $K$-trivial hypersurfaces are not rationally swept out by abelian varieties of dimension at least two. As a corollary, we show that Clemens’ conjecture on the finiteness of rational curves of given degree in a general quintic threefold, and Lang’s conjecture saying that such varieties should be rationally swept-out by abelian varieties, contradict.
LA - eng
UR - http://eudml.org/doc/84544
ER -

References

top
  1. [1] M. Asakura – S. Saito, Noether-Lefschetz locus for Beilinson-Hodge cycles on open complete intersections, preprint 2003. 
  2. [2] J. Carlson – Ph. Griffiths, Infinitesimal variations of Hodge structures and the global Torelli problem, In: “Journées de géométrie algébrique", A. Beauville (eds.), Sijthoff-Nordhoff, 1980, pp. 51-76. Zbl0479.14007MR605336
  3. [3] E. Cattani – P. Deligne – A. Kaplan, On the locus of Hodge classes, J. Amer. Math. Soc. (2) 8 (1995), 483-506. Zbl0851.14004MR1273413
  4. [4] L. Chiantini – A.-F. Lopez – Z. Ran, Subvarieties of generic hypersurfaces in any variety, Math. Proc. Cambr. Philos. Soc. (2002). Zbl1068.14508MR1806776
  5. [5] H. Clemens, Curves in generic hypersurfaces, Ann. Sci. École Norm. Sup. 19 (1986), 629-636. Zbl0611.14024MR875091
  6. [6] H. Clemens, Curves on higher-dimensional complex projective manifolds, In: “Proceedings of the International Congress of Mathematicians", (2) 1 (Berkeley, Calif., 1986), 634-640. Zbl0682.14024MR934266
  7. [7] H. Clemens – J. Kollár – S. Mori, “Higher dimensional complex geometry”, Astérisque 166, SMF (1988). Zbl0689.14016MR1004926
  8. [8] H. Clemens – Z. Ran, Twisted genus bounds for subvarieties of generic hypersurfaces, Amer. J. Math. 126 (2004), 89-120. Zbl1050.14035MR2033565
  9. [9] P. Deligne, Théorèmes de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. Inst. Hautes Études Sci. 35 (1968), 107-126. Zbl0159.22501MR244265
  10. [10] P. Deligne, Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 5-57. Zbl0219.14007MR498551
  11. [11] P. Deligne, La conjecture de Weil pour les surfaces K 3 , Invent. Math. 15 (1972), 206-226. Zbl0219.14022MR296076
  12. [12] L. Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988), 163-169. Zbl0701.14002MR958594
  13. [13] M. Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, In: “Algebraic curves and projective geometry", E. Ballico – C. Ciliberto (eds.), Lecture Notes in Mathematics 1389, Springer-Verlag 1989, pp. 76-86. Zbl0717.14002MR1023391
  14. [14] M. Green, A new proof of the explicit Noether-Lefschetz theorem, J. Differential Geom. 27 (1988), 155-159. Zbl0674.14005MR918461
  15. [15] Ph. Griffiths, Periods of certain rational integrals, I, II, Ann. of Math. 90 (1969), 460-541. Zbl0215.08103MR260733
  16. [16] S. Lang, Hyperbolic and diophantine Analysis, Bull. Amer. Math. Soc. (2) 14 (1986), 159-205. Zbl0602.14019MR828820
  17. [17] D. Mumford, Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195-204. Zbl0184.46603MR249428
  18. [18] M. Nori, Algebraic cycles and Hodge theoretic connectivity, Invent. Math. 111 (1993), 349-373. Zbl0822.14008MR1198814
  19. [19] A. Otwinowska, Asymptotic bounds for Nori’s connectivity theorem, preprint 2002. Zbl1086.14009MR2147354
  20. [20] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), 200-214, 49 (1998), 601-611. Zbl0883.14022MR1420353
  21. [21] C. Voisin, “Hodge Theory and Complex Algebraic Geometry II”, Cambridge University Press, 2003. Zbl1032.14002MR1997577
  22. [22] C. Voisin, Nori’s connectivity theorem and higher Chow groups, J. Inst. Math. Jussieu (2) 1 (2002), 307-329. Zbl1036.14004MR1954824

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.