Summability of semicontinuous supersolutions to a quasilinear parabolic equation
Juha Kinnunen[1]; Peter Lindqvist[2]
- [1] Department of Mathematical Sciences University of Oulu P.O. Box 3000 FI-90014 Oulu, Finland
- [2] Department of Mathematics Norwegian University of Science and Technology N-7491 Trondheim, Norway
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 1, page 59-78
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topKinnunen, Juha, and Lindqvist, Peter. "Summability of semicontinuous supersolutions to a quasilinear parabolic equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.1 (2005): 59-78. <http://eudml.org/doc/84556>.
@article{Kinnunen2005,
abstract = {We study the so-called $p$-superparabolic functions, which are defined as lower semicontinuous supersolutions of a quasilinear parabolic equation. In the linear case, when $p = 2$, we have supercaloric functions and the heat equation. We show that the $p$-superparabolic functions have a spatial Sobolev gradient and a sharp summability exponent is given.},
affiliation = {Department of Mathematical Sciences University of Oulu P.O. Box 3000 FI-90014 Oulu, Finland; Department of Mathematics Norwegian University of Science and Technology N-7491 Trondheim, Norway},
author = {Kinnunen, Juha, Lindqvist, Peter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Sobolev derivative; -superparabolic functions},
language = {eng},
number = {1},
pages = {59-78},
publisher = {Scuola Normale Superiore, Pisa},
title = {Summability of semicontinuous supersolutions to a quasilinear parabolic equation},
url = {http://eudml.org/doc/84556},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Kinnunen, Juha
AU - Lindqvist, Peter
TI - Summability of semicontinuous supersolutions to a quasilinear parabolic equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 1
SP - 59
EP - 78
AB - We study the so-called $p$-superparabolic functions, which are defined as lower semicontinuous supersolutions of a quasilinear parabolic equation. In the linear case, when $p = 2$, we have supercaloric functions and the heat equation. We show that the $p$-superparabolic functions have a spatial Sobolev gradient and a sharp summability exponent is given.
LA - eng
KW - Sobolev derivative; -superparabolic functions
UR - http://eudml.org/doc/84556
ER -
References
top- [1] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal. 25 (1967), 81–122. Zbl0154.12001MR244638
- [2] G. I. Barenblatt, On selfsimilar motions of compressible fluids in a porous medium (in Russian), Prikl. Mat. Mekh. 16 (1952), 679–698. Zbl0047.19204MR52948
- [3] E. DiBenedetto, “Degenerate Parabolic Equations”, Springer-Verlag, Berlin-Heidelberg-New York, 1993. Zbl0794.35090MR1230384
- [4] E. Di Benedetto, J. M. Urbano and V. Vespri, Current issues on sigular and degenerate evolution equations, in: “Handbook of Differential Equations”, C. Dafermos and E. Feireisl (eds.) in press, Elsevier Publ. Zbl1082.35002
- [5] P. Juutinen, P. Lindqvist and J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), 699-717. Zbl0997.35022MR1871417
- [6] J. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl. (4) to appear. Zbl1232.35080MR2231032
- [7] T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM. J. Math. Anal. 27 (1996), 661–683. Zbl0857.35071MR1382827
- [8] T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 591–613. Zbl0797.35052MR1205885
- [9] O. A. Ladyzhenskaya, V. A. Solonnikov and N.N. Uraltseva, “Linear and Quasilinear Equations of Parabolic Type”, AMS, Providence R. I., 1968.
- [10] P. Lindqvist, On the definition and properties of -superharmonic functions, J. Reine Angew. Math. 365 (1986), 67–79. Zbl0572.31004MR826152
- [11] G. Lieberman, “Second Order Parabolic Equations”, World Scientific, Singapore, 1996. Zbl0884.35001MR1465184
- [12] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. Zbl0149.06902MR159139
- [13] J. Moser, Correction to: “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math. 20 (1967), 231–236. Zbl0149.07001MR203268
- [14] N. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205–226. Zbl0159.39303MR226168
- [15] N. A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation, Proc. London Math. Soc. 33 (1976), 251–298. Zbl0336.35046MR425145
- [16] N. A. Watson, Corrigendum, Proc. London Math. Soc. 37 (1977), 32–34. Zbl0388.35030MR499239
- [17] Z. Wu, J. Zhao, J. Yin and H. Li, “Nonlinear Diffusion Equations”, World Scientific, Singapore, 2001. Zbl0997.35001MR1881297
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.