Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in N

Luca Lorenzi[1]

  • [1] Dipartimento di Matematica Università di Parma Parco Area delle Scienze 53/A 43100 Parma, Italy

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 2, page 255-293
  • ISSN: 0391-173X

Abstract

top
We consider a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in N . Using a revised version of Bernstein’s method we provide several uniform estimates for the semigroup { T ( t ) } t 0 associated with the realization of the operator 𝒜 in the space of all the bounded and continuous functions in N

How to cite

top

Lorenzi, Luca. "Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.2 (2005): 255-293. <http://eudml.org/doc/84560>.

@article{Lorenzi2005,
abstract = {We consider a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in $\mathbb \{R\}^N$. Using a revised version of Bernstein’s method we provide several uniform estimates for the semigroup $\lbrace T(t)\rbrace _\{t\ge 0\}$ associated with the realization of the operator $\{\mathcal \{A\}\}$ in the space of all the bounded and continuous functions in $\mathbb \{R\}^N$},
affiliation = {Dipartimento di Matematica Università di Parma Parco Area delle Scienze 53/A 43100 Parma, Italy},
author = {Lorenzi, Luca},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {degenerate Ornstein-Uhlenbeck operator; Bernstein method},
language = {eng},
number = {2},
pages = {255-293},
publisher = {Scuola Normale Superiore, Pisa},
title = {Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/84560},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Lorenzi, Luca
TI - Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 2
SP - 255
EP - 293
AB - We consider a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in $\mathbb {R}^N$. Using a revised version of Bernstein’s method we provide several uniform estimates for the semigroup $\lbrace T(t)\rbrace _{t\ge 0}$ associated with the realization of the operator ${\mathcal {A}}$ in the space of all the bounded and continuous functions in $\mathbb {R}^N$
LA - eng
KW - degenerate Ornstein-Uhlenbeck operator; Bernstein method
UR - http://eudml.org/doc/84560
ER -

References

top
  1. [1] S. Bernstein, Sur la généralisation du probléme de Dirichlet, I, Math. Ann. 62 (1906), 253-271. Zbl37.0383.01MR1511375JFM37.0383.01
  2. [2] M. Bertoldi and L. Lorenzi, Analytic methods for Markov semigroups, Preprint 401, Dipartimento di Matematica, Università di Parma, 2005. Zbl1065.35077MR2313847
  3. [3] M. Bertoldi and L. Lorenzi, Estimates of the derivatives for parabolic operators with unbounded coefficients, Trans. Amer. Math. Soc. (to appear). Zbl1065.35077MR2139521
  4. [4] S. Cerrai, Some results for second order elliptic operators having unbounded coefficients, Differential Integral Equations 11 (1998), 561-588. Zbl1131.35393MR1666273
  5. [5] G. Da Prato, Regularity results for some degenerate parabolic equations, Riv. Mat. Univ. Parma (6) 2* (1999), 245-257. Zbl0962.35110MR1752802
  6. [6] S. Fornaro, G. Metafune and E. Priola, Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Differential Equations 205 (2004), 329-353. Zbl1061.35022MR2092861
  7. [7] A. Friedman, “Partial Differential Equations of Parabolic Type”, Prentice Hall, Englewood Cliffs, N.J., 1964. Zbl0144.34903MR181836
  8. [8] R.Z. Has’minskii, “Stochastic Stability of Differential Equations”, Nauka 1969 (in Russian), English translation: Sijthoff and Noordhoff 1980. MR600653
  9. [9] N.V. Krylov, “Introduction to the Theory of Diffusion Processes”, American Mathematical Society 142, (1992). Zbl0844.60050MR1311478
  10. [10] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’ceva, “Linear and Quasilinear Equations of Parabolic Type”, Nauka, English transl.: American Mathematical Society, Providence, 1968. Zbl0174.15403
  11. [11] G. Lieberman, “Second Order Parabolic Differential Equations”, World Scientific Publishing Co. Pte. Ltd, Singapore, New Jersey, London Hong Kong, 1996. Zbl0884.35001MR1465184
  12. [12] L. Lorenzi, Schauder estimates for a class of degenerate elliptic and parabolic problems with unbounded coefficients, Differential Integral Equations 18 (2005), 531-566. Zbl1212.35255MR2136978
  13. [13] A. Lunardi, “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Birkhäuser, Basel, 1995. Zbl0816.35001MR1329547
  14. [14] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in N , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 133-164. Zbl0887.35062MR1475774
  15. [15] A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in N , Studia Math. 128 (1998), 171-198. Zbl0899.35014MR1490820
  16. [16] M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations 2 (1997), 831-866. Zbl1023.35518MR1751429
  17. [17] M. Manfredini and A. Pascucci, A priori estimates for quasilinear degenerate parabolic equations, Proc. Amer. Math. Soc. 131 (2002), 1115-1120. Zbl1195.35173MR1948102
  18. [18] G. Metafune, D. Pallara and M. Wacker, Feller semigroups on N , Semigroup Forum 65 (2002), 159-205. Zbl1014.35050MR1911723
  19. [19] A. Pascucci, Hölder regularity for a Kolmogorov equation, Trans. Amer. Math. Soc. 355 (2002), 901-924. Zbl1116.35330MR1938738
  20. [20] S. Polidoro, On a class of ultraparabolic operators of Kolmogorov-Fokker-Plank type, Matematiche (Catania) 49 (1994), 53-105 (1995). Zbl0845.35059MR1386366
  21. [21] E. Priola, The Cauchy problem for a class of Markov-type semigroups, Comm. Appl. Anal. 5 (2001), 49-75. Zbl1084.47517MR1844671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.