Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in
Luca Lorenzi[1]
- [1] Dipartimento di Matematica Università di Parma Parco Area delle Scienze 53/A 43100 Parma, Italy
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 2, page 255-293
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topLorenzi, Luca. "Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.2 (2005): 255-293. <http://eudml.org/doc/84560>.
@article{Lorenzi2005,
abstract = {We consider a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in $\mathbb \{R\}^N$. Using a revised version of Bernstein’s method we provide several uniform estimates for the semigroup $\lbrace T(t)\rbrace _\{t\ge 0\}$ associated with the realization of the operator $\{\mathcal \{A\}\}$ in the space of all the bounded and continuous functions in $\mathbb \{R\}^N$},
affiliation = {Dipartimento di Matematica Università di Parma Parco Area delle Scienze 53/A 43100 Parma, Italy},
author = {Lorenzi, Luca},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {degenerate Ornstein-Uhlenbeck operator; Bernstein method},
language = {eng},
number = {2},
pages = {255-293},
publisher = {Scuola Normale Superiore, Pisa},
title = {Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/84560},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Lorenzi, Luca
TI - Estimates of the derivatives for a class of parabolic degenerate operators with unbounded coefficients in $\mathbb {R}^N$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 2
SP - 255
EP - 293
AB - We consider a class of perturbations of the degenerate Ornstein-Uhlenbeck operator in $\mathbb {R}^N$. Using a revised version of Bernstein’s method we provide several uniform estimates for the semigroup $\lbrace T(t)\rbrace _{t\ge 0}$ associated with the realization of the operator ${\mathcal {A}}$ in the space of all the bounded and continuous functions in $\mathbb {R}^N$
LA - eng
KW - degenerate Ornstein-Uhlenbeck operator; Bernstein method
UR - http://eudml.org/doc/84560
ER -
References
top- [1] S. Bernstein, Sur la généralisation du probléme de Dirichlet, I, Math. Ann. 62 (1906), 253-271. Zbl37.0383.01MR1511375JFM37.0383.01
- [2] M. Bertoldi and L. Lorenzi, Analytic methods for Markov semigroups, Preprint 401, Dipartimento di Matematica, Università di Parma, 2005. Zbl1065.35077MR2313847
- [3] M. Bertoldi and L. Lorenzi, Estimates of the derivatives for parabolic operators with unbounded coefficients, Trans. Amer. Math. Soc. (to appear). Zbl1065.35077MR2139521
- [4] S. Cerrai, Some results for second order elliptic operators having unbounded coefficients, Differential Integral Equations 11 (1998), 561-588. Zbl1131.35393MR1666273
- [5] G. Da Prato, Regularity results for some degenerate parabolic equations, Riv. Mat. Univ. Parma (6) 2* (1999), 245-257. Zbl0962.35110MR1752802
- [6] S. Fornaro, G. Metafune and E. Priola, Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Differential Equations 205 (2004), 329-353. Zbl1061.35022MR2092861
- [7] A. Friedman, “Partial Differential Equations of Parabolic Type”, Prentice Hall, Englewood Cliffs, N.J., 1964. Zbl0144.34903MR181836
- [8] R.Z. Has’minskii, “Stochastic Stability of Differential Equations”, Nauka 1969 (in Russian), English translation: Sijthoff and Noordhoff 1980. MR600653
- [9] N.V. Krylov, “Introduction to the Theory of Diffusion Processes”, American Mathematical Society 142, (1992). Zbl0844.60050MR1311478
- [10] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’ceva, “Linear and Quasilinear Equations of Parabolic Type”, Nauka, English transl.: American Mathematical Society, Providence, 1968. Zbl0174.15403
- [11] G. Lieberman, “Second Order Parabolic Differential Equations”, World Scientific Publishing Co. Pte. Ltd, Singapore, New Jersey, London Hong Kong, 1996. Zbl0884.35001MR1465184
- [12] L. Lorenzi, Schauder estimates for a class of degenerate elliptic and parabolic problems with unbounded coefficients, Differential Integral Equations 18 (2005), 531-566. Zbl1212.35255MR2136978
- [13] A. Lunardi, “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Birkhäuser, Basel, 1995. Zbl0816.35001MR1329547
- [14] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 133-164. Zbl0887.35062MR1475774
- [15] A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in , Studia Math. 128 (1998), 171-198. Zbl0899.35014MR1490820
- [16] M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations 2 (1997), 831-866. Zbl1023.35518MR1751429
- [17] M. Manfredini and A. Pascucci, A priori estimates for quasilinear degenerate parabolic equations, Proc. Amer. Math. Soc. 131 (2002), 1115-1120. Zbl1195.35173MR1948102
- [18] G. Metafune, D. Pallara and M. Wacker, Feller semigroups on , Semigroup Forum 65 (2002), 159-205. Zbl1014.35050MR1911723
- [19] A. Pascucci, Hölder regularity for a Kolmogorov equation, Trans. Amer. Math. Soc. 355 (2002), 901-924. Zbl1116.35330MR1938738
- [20] S. Polidoro, On a class of ultraparabolic operators of Kolmogorov-Fokker-Plank type, Matematiche (Catania) 49 (1994), 53-105 (1995). Zbl0845.35059MR1386366
- [21] E. Priola, The Cauchy problem for a class of Markov-type semigroups, Comm. Appl. Anal. 5 (2001), 49-75. Zbl1084.47517MR1844671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.