Geometric rigidity of conformal matrices

Daniel Faraco[1]; Xiao Zhong[2]

  • [1] Departamento de Matematicas Universidad Autónoma de Madrid 28049 Madrid, Spain
  • [2] Department of Mathematics and Statistics University of Jyväskylä P.O. Box 35 (MaD) FIN-40014 Jyväskylä, Finland

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 4, page 557-585
  • ISSN: 0391-173X

Abstract

top
We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace SO ( n ) by an arbitrary compact set of conformal matrices, bounded away from 0 and invariant under SO ( n ) , and rigid motions by Möbius transformations.

How to cite

top

Faraco, Daniel, and Zhong, Xiao. "Geometric rigidity of conformal matrices." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 557-585. <http://eudml.org/doc/84571>.

@article{Faraco2005,
abstract = {We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace $\{\rm SO\}(n)$ by an arbitrary compact set of conformal matrices, bounded away from $0$ and invariant under $\{\rm SO\}(n)$, and rigid motions by Möbius transformations.},
affiliation = {Departamento de Matematicas Universidad Autónoma de Madrid 28049 Madrid, Spain; Department of Mathematics and Statistics University of Jyväskylä P.O. Box 35 (MaD) FIN-40014 Jyväskylä, Finland},
author = {Faraco, Daniel, Zhong, Xiao},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {557-585},
publisher = {Scuola Normale Superiore, Pisa},
title = {Geometric rigidity of conformal matrices},
url = {http://eudml.org/doc/84571},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Faraco, Daniel
AU - Zhong, Xiao
TI - Geometric rigidity of conformal matrices
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 557
EP - 585
AB - We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace ${\rm SO}(n)$ by an arbitrary compact set of conformal matrices, bounded away from $0$ and invariant under ${\rm SO}(n)$, and rigid motions by Möbius transformations.
LA - eng
UR - http://eudml.org/doc/84571
ER -

References

top
  1. [1] A. F. Beardon, “The Geometry of Discrete Groups”, Graduate Texts in Mathematics, Vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. Zbl0528.30001MR1393195
  2. [2] N. Chaudhuri and S. Müller, Rigidity estimate for two incompatible wells, Calc. Var. Partial Differential Equations 19 (2004), 379–390. Zbl1086.49010MR2039459
  3. [3] G. Dal Maso, M. Negri and D. Percivale, Linearized elasticity as Γ -limit of finite elasticity. Calculus of variations, nonsmooth analysis and related topics, Set-Valued Anal. 10 (2002), 165–183. Zbl1009.74008MR1926379
  4. [4] E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25–43. Zbl0084.31901MR93649
  5. [5] D. Faraco, Rigidity of sets of matrices, In: “Future Trends in Geometric Function Theory”, Rep. Univ. Jyväskylä Dep. Math. Stat., Vol. 92, Univ. Jyväskylä, Jyväskylä, 2003, 77–83. Zbl1134.31304MR2058112
  6. [6] G. Friesecke, R. D. James, M. G. Mora and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Math. Acad. Sci. Paris 336 (2003), 697–702. Zbl1140.74481MR1988135
  7. [7] G. Friesecke, S. Müller and R. D. James, Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Math. Acad. Sci. Paris 334 (2002), 173–178. Zbl1012.74043MR1885102
  8. [8] G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), 1461–1506. Zbl1021.74024MR1916989
  9. [9] F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. Zbl0113.05805MR139735
  10. [10] E. Giusti, “Direct Methods in the Calculus of Variations”, World Scientific Publishing Co. Inc., River Edge, NJ, 2003. Zbl1028.49001MR1962933
  11. [11] J. Heinonen, T. Kilpeläinen and O. Martio, “Nonlinear Potential Theory of Degenerate Elliptic Equations”, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications. Zbl0780.31001MR1207810
  12. [12] S. Hencl, P. Koskela and X. Zhong, Mappings of finite distortion: Reverse inequalities for the Jacobian , Preprint 310 at the University of Jyväskylä (2004). Zbl1126.30014MR2320164
  13. [13] T. Iwaniec, p -harmonic tensors and quasiregular mappings, Ann. of Math. (2) 136 (1992), 589–624. Zbl0785.30009MR1189867
  14. [14] T. Iwaniec and G. Martin, “Geometric Function Theory and Non-Linear Analysis”, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2001. Zbl1045.30011MR1859913
  15. [15] F. John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391–413. Zbl0102.17404MR138225
  16. [16] J. Liouville, Théorème sur l’équation d x 2 + d y 2 + d z 2 = λ ( d α 2 + d β 2 + d γ 2 , J. Math. Pures Appl. 15 (1850). 
  17. [17] M. G. Mora and S. Müller, Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ -convergence, Calc. Var. Partial Differential Equations 18 (2003), 287–305. Zbl1053.74027MR2018669
  18. [18] M. G. Mora and S. Müller, A nonlinear model for inextensible rods as a low energy Γ -limit of three-dimensional nonlinear elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 271–293. Zbl1109.74028MR2068303
  19. [19] J. G. Rešetnjak, Liouville’s conformal mapping theorem under minimal regularity hypotheses, Sibirsk. Mat. Zh. 8 (1967), 835–840. Zbl0167.36102MR218544
  20. [20] J. G. Rešetnjak, Estimates for certain differential operators with finite-dimensional kernel, Sibirsk. Mat. Zh. 11 (1970), 414–428. Zbl0233.35010MR264464
  21. [21] J. G. Rešetnjak, “Stability Theorems in Geometry and Analysis”, Mathematics and its Applications, Vol. 304, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated from the 1982 Russian original by N. S. Dairbekov and V. N. Dyatlov, and revised by the author, Translation edited and with a foreword by S. S. Kutateladze. Zbl0925.53005MR1326375

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.