Local vs. global hyperconvexity, tautness or k -completeness for unbounded open sets in 𝒞 n

Nikolai Nikolov[1]; Peter Pflug[2]

  • [1] Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia, Bulgaria
  • [2] Carl von Ossietzky Universität Oldenburg Fachbereich Mathematik Postfach 2503 D-26111 Oldenburg, Germany

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 4, page 601-618
  • ISSN: 0391-173X

Abstract

top
Some known localization results for hyperconvexity, tautness or k -completeness of bounded domains in n are extended to unbounded open sets in 𝒞 n .

How to cite

top

Nikolov, Nikolai, and Pflug, Peter. "Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 601-618. <http://eudml.org/doc/84573>.

@article{Nikolov2005,
abstract = {Some known localization results for hyperconvexity, tautness or $k$-completeness of bounded domains in $\mathbb \{C\}^n$ are extended to unbounded open sets in $\mathcal \{C\}^n$.},
affiliation = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia, Bulgaria; Carl von Ossietzky Universität Oldenburg Fachbereich Mathematik Postfach 2503 D-26111 Oldenburg, Germany},
author = {Nikolov, Nikolai, Pflug, Peter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {601-618},
publisher = {Scuola Normale Superiore, Pisa},
title = {Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal \{C\}^n$},
url = {http://eudml.org/doc/84573},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Nikolov, Nikolai
AU - Pflug, Peter
TI - Local vs. global hyperconvexity, tautness or $k$-completeness for unbounded open sets in $\mathcal {C}^n$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 601
EP - 618
AB - Some known localization results for hyperconvexity, tautness or $k$-completeness of bounded domains in $\mathbb {C}^n$ are extended to unbounded open sets in $\mathcal {C}^n$.
LA - eng
UR - http://eudml.org/doc/84573
ER -

References

top
  1. [1] M. Abate, A characterization of hyperbolic manifolds, Proc. Amer. Math. Soc. 117 (1993), 789–793. Zbl0773.32018MR1128723
  2. [2] Z. Blocki, The complex Monge-Ampère operator in pluripotential theory, Preprint (2004) (http://www.im.uj.edu.pl). Zbl1060.32018
  3. [3] G. T. Buzzard and J. E. Fornaess, An embedding of in 2 with hyperbolic complements, Math. Ann. 306 (1996), 539–546. Zbl0864.32013MR1415077
  4. [4] B.-Y. Chen, Bergman completeness of hyperconvex manifolds, Nagoya Math. J. 175 (2004), 165–170. Zbl1061.32010MR2085315
  5. [5] B.-Y. Chen and Z.-H. Zhang, The Bergman metric on a Stein manifold with a bouded plurisubharminc function, Trans. Amer. Math. Soc. 354 (2002), 2997–3009. Zbl0997.32011MR1897387
  6. [6] A. Eastwood, À propos des variétés hyperboliques completes, C. R. Acad. Sci. Paris 280 (1975), 1071–1075. Zbl0301.32021MR414941
  7. [7] F. Forstnerič, Interpolation by holomorphic automorphisms and embeddings in 𝒞 n , J. Geom. Anal. 9 (1999), 93–117. Zbl0963.32006MR1760722
  8. [8] H. Gaussier, Tautness and complete hyperbolicity of domains in n , Proc. Amer. Math. Soc. 127 (1999), 105–116. Zbl0912.32025MR1458872
  9. [9] N. Kerzman and J.-P. Rosay, Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut, Math. Ann. 257 (1981), 171–184. Zbl0451.32012MR634460
  10. [10] M. Jarnicki and P. Pflug, Remarks on the pluricomplex Green function, Indiana Univ. Math. J. 44 (1995), 535–543. Zbl0848.31007MR1355411
  11. [11] M. Jarnicki and P. Pflug, “Invariant Distances and Metrics in Complex Analysis”, de Gruyter, 1993. Zbl0789.32001MR1242120
  12. [12] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis–revisited, Dissertationes Math. 430 (2005), 1–192. Zbl1085.32005MR2167637
  13. [13] M. Jarnicki, P. Pflug and W. Zwonek, On Bergman completeness of non-hyperconvex domains, Univ. Iagel. Acta Math. 38 (2000), 169–184. Zbl1007.32005MR1812111
  14. [14] S.-H. Park, “Tautness and Kobayashi Hyperbolicty”, Ph. D. thesis, Oldenburg, 2003. Zbl1017.32021
  15. [15] N. Sibony, A class of hyperbolic manifolds, In: “Recent Developments in Several Complex Variables”, J. E. Fornaess (ed.), Ann. Math. Studies 100 (1981), 347–372. Zbl0476.32033MR627768
  16. [16] Do Duc Thai and Pham Viet Duc, On the complete hyperbolicity and the tautness of the Hartogs domains, Internat. J. Math. 11 (2000), 103–111. Zbl1110.32304MR1757893
  17. [17] Do Duc Thai and P. J. Thomas, 𝔻 * -extension property without hyperbolicity, Indiana Univ. Math. J. 47 (1998), 1125-1130. Zbl0927.37024MR1665757
  18. [18] Do Duc Thai and Pham Nguyen Thu Trang, Tautness of locally taut domains in complex spaces, Ann. Polon. Math. 83 (2004), 141–148. Zbl1114.32012MR2111404
  19. [19] V. P. Zaharjuta,Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, Teor. Funkcii, Funkcional. Anal. i Prilozen. 19 (1974), 133–157. MR447632
  20. [20] W. Zwonek, Regularity properties of the Azukawa metric, J. Math. Soc. Japan 52 (2000), 899–914. Zbl0986.32016MR1774635

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.