Propriétés et existence des solutions de certaines classes d'équations du type elliptique

Paul P. Gillis

Bulletin de la Société Mathématique de France (1958)

  • Volume: 86, page 283-297
  • ISSN: 0037-9484

How to cite

top

Gillis, Paul P.. "Propriétés et existence des solutions de certaines classes d'équations du type elliptique." Bulletin de la Société Mathématique de France 86 (1958): 283-297. <http://eudml.org/doc/86941>.

@article{Gillis1958,
author = {Gillis, Paul P.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {elliptic equations; bibliography; Dirichlet problem; elliptic operators},
language = {fre},
pages = {283-297},
publisher = {Société mathématique de France},
title = {Propriétés et existence des solutions de certaines classes d'équations du type elliptique},
url = {http://eudml.org/doc/86941},
volume = {86},
year = {1958},
}

TY - JOUR
AU - Gillis, Paul P.
TI - Propriétés et existence des solutions de certaines classes d'équations du type elliptique
JO - Bulletin de la Société Mathématique de France
PY - 1958
PB - Société mathématique de France
VL - 86
SP - 283
EP - 297
LA - fre
KW - elliptic equations; bibliography; Dirichlet problem; elliptic operators
UR - http://eudml.org/doc/86941
ER -

References

top
  1. [1]AGMON (S.). — Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane (Comm. pure appl. Math., vol. 10, 1957, p. 179-239). Zbl0081.09801MR21 #5057
  2. [2]ARONSAJN (N.). — On coercive integro-differential forms (Studies in Eigenvalue Problems, no 14, Lawrence Kansas, 1955, p. 94-106). Zbl0067.32702
  3. [3]ARONSAJN (N.). — A unique continuation theorem for all partial differential equations and inequalities of second order (Bull. Amer. math. Soc., vol. 62, Abstract 184, 1956, p. 154). 
  4. [4]BERS (L.). — Survey of local properties of solutions of elliptic partial differential equations (Comm. pure appl. Math., vol. 9, 1956, p. 339-350). Zbl0074.08001MR18,398d
  5. [5]BERS (L.) et NIRENBERG (L.). — Boundary value problems for nonlinear elliptic equations in two independent variables (Proc. Int. Congress Amsterdam, 1954, p. 84-85). 
  6. [6]BERS (L.) et NIRENBERG (L.). — On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications (Convegno internazionale sulle equazioni derivate e parziali, 1954, p. 111-140). Zbl0067.32503MR17,974d
  7. [7]BERS (L.) et NIRENBERG (L.). — On linear and nonlinear elliptic boundary value problems in the plane (Convegno internationale sulle equazioni derivate e parziali, 1954, p. 141-167). Zbl0067.32504MR17,974e
  8. [8]BROWDER (F. E.). — The Dirichlet problem for linear elliptic equations of arbitrary even order with variable coefficients (Proc. nat. Acad. Sc. U.S.A., vol. 38, no 3, 1952, p. 230-235). Zbl0046.32302MR14,174c
  9. [9]BROWDER (F. E.). — The Dirichlet and vibration problems for linear elliptic differential equations of arbitrary order (Proc. nat. Acad. Sc. U.S.A., vol. 38, no 8, 1952, p. 741-747). Zbl0047.09501MR14,473e
  10. [10]BROWDER (F. E.). — Assumption of boundary values and the Green's function in the Dirichlet problem for the general linear elliptic equation (Proc. nat. Acad. Sc. U.S.A., vol. 39, no 3, 1953, p. 179-184). Zbl0050.09701MR14,984d
  11. [11]BROWDER (F. E.). — Linear parabolic differential equations of arbitrary order ; general boundary-value problems for elliptic equations (Proc. nat. Acad. Sc. U.S.A., vol. 39, no 3, 1953, p. 185-190). Zbl0050.09702MR14,984f
  12. [12]BROWDER (F. E.). — Strongly elliptic systems of differential equations (Contributions to the Theory of partial differental equations, Ann. Math. Studies no 33, Princeton, 1954, p. 15-51). Zbl0057.32901MR16,705f
  13. [13]BROWDER (F. E.). — Regularity properties of solutions of elliptic differential equations (Abstract 695, Bull. Amer. math. Soc., vol. 61, 1955, p. 528). 
  14. [14]BROWDER (F. E.). — On the regularity properties of solutions of elliptic differential equations (Comm. pure appl. Math., vol. 9, 1956, p. 351-361). Zbl0070.09601MR19,862a
  15. [15]CALDERON (A. P.) et ZYGMUND (A.). — On the existence of singular integrals (Acta Math., vol. 88, 1952, p. 85-139). Zbl0047.10201MR14,637f
  16. [16]CARLEMAN (T). — Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables (C. R. Acad. Sc. Paris, t. 197, 1933, p. 471-474). Zbl0007.16202JFM59.0469.03
  17. [17]CARLEMAN (T.). — Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes (Ark. Mat. Astr. Fys., vol. 26 B, no 17, 1939, p. 1-9). Zbl0022.34201MR1,55fJFM65.0394.03
  18. [18]CORDES (H. O). — Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen (Math. Ann., vol. 131, 1956, p. 278-312). Zbl0070.09604MR19,961e
  19. [19]COURANT (R.) et HILBERT (D.). — Methoden der mathematischen Physik, vol. 2, chap. 7, Berlin, Springer, 1937. Zbl0017.39702JFM63.0449.05
  20. [20]DE GIORGI (E.). — Un esempio di non-unicità della soluzione del problema di Cauchy, relativo ad una equazione differenziale lineare a derivate parziali di tipo parabolico (Rend. Mat. e Appl., 5e série, vol. 14, 1955, p. 382-387). Zbl0064.34504MR16,1119a
  21. [21]DOUGLIS (A.). — Uniqueness in Cauchy problems for elliptic systems of equations (Comm. pure appl. Math., vol. 6, 1953, p. 291-298). Zbl0050.31902MR16,257d
  22. [22]DOUGLIS (A.) et NIRENBERG (L.). — Interior estimates for elliptic systems of partial differential equations (Comm. pure appl. Math., vol. 8, 1955, p. 503-538). Zbl0066.08002MR17,743b
  23. [23]FRIEDRICHS (K. O.). — On differential operators in Hilbert spaces (Amer. J. Math., vol. 61, 1939, p. 523-544). Zbl0020.36802JFM65.0508.02
  24. [24]KRIEDRICHS (K. O.). — The identity of weak and strong extensions of differential operators (Trans. Amer. math. Soc., vol. 55, no 1, 1944, p. 132-151). Zbl0061.26201MR5,188b
  25. [25]FRIEDRICHS (K. O.). — Differentiability of solutions of elliptic differential equations (Comm. pure appl. Math., vol. 6, 1953, p. 299-326). Zbl0051.32703MR15,430c
  26. [26]GÅRDING (L.). — Le problème de Dirichlet pour les équations aux dérivées partielles elliptiques homogènes à coefficients constants (C. R. Acad., Sc. Paris, t. 230, 1950, p. 1030-1032). Zbl0035.34704MR11,521b
  27. [27]GÅRDING (L.). — Dirichlet's problem for linear elliptic partial differential equations (Math. Scand., vol. 1, 1953, p. 55-72). Zbl0053.39101MR16,366a
  28. [28]GILLIS (P. P.). — Sur certaines classes d'équations aux dérivées-partielles (Acad. Roy. Belgique, Bull. Cl. Sc., vol. 22, 1936, p. 835-854 et 941-947). Zbl0015.11201JFM62.0558.02
  29. [29]GILLIS (P. P.). — Sur les problèmes réguliers du calcul des variations (Studia Mathematica, vol. 8, 1938, p. 68-77). Zbl0020.37105JFM65.0448.01
  30. [30]GILLIS (P. P.). — Équations de Monge-Ampère à quatre variables indépendantes (Acad. Roy. Belgique, Bull. Cl. Sc., vol. 36, 1950, p. 474-484). Zbl0040.34502MR12,415c
  31. [31]GILLIS (P. P.). — Équations de Monge-Ampère à six variables indépendantes (Acad. Roy. Belgique, Bull. Cl. Sc., vol. 37, 1951, p. 229-240). Zbl0043.31403MR12,830b
  32. [32]GUSEVA (O. V.). — On boundary problems for strongly elliptic systems (Doklady Akad. Nauk S. S. S. R., vol. 12, 1955, p. 1069-1072). Zbl0064.09705MR17,161a
  33. [33]HAAR (A.), — Zur Variationsrechnung (Abh. Math. Sem. Hamburgischen Univ. vol. 8, 1930, p. 1-27). JFM56.0437.03
  34. [34]HARTMAN (P) et WINTNER (A.). — On the local behavior of solutions of non-parabolic partial differential equations (Amer. J. Math., vol. 75, 1953, p. 449-476). Zbl0052.32201MR15,318b
  35. [35]HARTMAN (P.) et WINTNER (A.). — On the tocal behavior of solutions of non-parabolic partial differential equations. III : Approximations by spherical means (Amer. J. Math., vol. 77, 1955, p. 453-483). Zbl0066.08001MR17,855a
  36. [36]HEINZ (E.). — Über die Eindeutigkeit beim Cauchyschen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung (Nachr. Akad. Wiss. Göttingen, Math. Phys., Kl. II a, n° 1, 1955, p. 1-12). Zbl0067.07503MR17,626c
  37. [37]HÖRMANDER (L.). — On the theory of general partial differential operators (Acta Math., vol. 94, 1955, p. 161-248). Zbl0067.32201MR17,853d
  38. [38]JOHN (F.). — On linear partial differential equations with analytic coefficients (Comm. pure appl. Math., vol. 2, 1949, p. 209-253). Zbl0035.34601MR12,185d
  39. [39]JOHN (F.). — The fundamental solution of linear elliptic differential equations with analytic coefficients (Comm. pure appl. Math., vol. 3, 1950, p. 273-304). Zbl0041.06203MR13,40h
  40. [40]JOHN (F.). — Derivatives of continuous weak solutions of linear elliptic equations (Comm. pure appl. Math., vol. 6, 1953, p. 327-335). Zbl0051.32801MR15,431a
  41. [41]JOHN (F.). — Plane waves and spherical means applied to partial differential equations, New-York, Interscience Publ., 1955. Zbl0067.32101MR17,746d
  42. [42]LAX (P. D.). — On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations (Comm. pure appl. Math., vol. 8, 1955, p. 615-633). Zbl0067.07502MR17,1212c
  43. [43]LAX (P. D.). — A stability theorem for solutions of abstract differential equations and its application to the study of the local behavior of solutions of elliptic equations (Comm. pure appl. Math., vol. 9, 1956, p. 747-766). Zbl0072.33004MR19,281a
  44. [44]LERAY (J.) et SCHAUDER (J.). — Topologie et équations fonctionnelles (Ann. scient. Éc. Norm. Sup., t. 51, 1934, p. 45-78). Zbl0009.07301JFM60.0322.02
  45. [45]LIONS (J. L.). — Sur les problèmes de dérivées obliques (C. R. Acad. Sc. Paris, t. 240, 1955, p. 266-268). Zbl0064.10004MR16,1028d
  46. [46]LIONS (J. L.). — Problèmes aux limites en théorie des distributions (Acta Math., vol. 94, 1955, p. 13-153). Zbl0068.30902MR17,745d
  47. [47]LOPATINSKII (Ya. B.). — On a method of reducing boundary problems for a system of differential equations of elliptic type to regular equations (Ukrain. Mat. Ž., t. 5, 1953, p. 123-151). MR17,494b
  48. [48]MALGRANGE (B.). — Exixtence et approximation des solutions des équations aux dérivées partielles et des équations de convolution (Thèse Sc. math., Paris, 1955). 
  49. [49]MILGRAM (A.) et ROSENBLOOM (P. C.). — Harmonic forms and heat conduction. 
  50. MILGRAM (A.) et ROSENBLOOM (P. C.) I : Closed Riemannian manifols ; 
  51. MILGRAM (A.) et ROSENBLOOM (P. C.) II : Heat distribution on complexes and approximation theory (Proc. Nat. Acad. Sc. U. S. A., vol. 37, 1951, p. 180-184 et 435-438). Zbl0054.04202MR13,160a
  52. [50]MIRANDA (C). — Formule di maggiorazione e teorema di esistenza per le funzioni biarmoniche di due variabili (Giorn. Mat. Battaglini, vol. 78, 1948-1949, p. 97-118). Zbl0037.07103MR10,706f
  53. [51]MIRANDA (C.). — Sui sisteme di tipo ellittico di equazioni lineari a derivate parziali del primo ordine, in n variabili indipendenti (Atti delle Ac. naz. dei Lincei., 8e série, 1 a, vol. 3, 1952, p. 85-121). Zbl0049.35001MR14,175b
  54. [52]MIRANDA (C.). — Equazioni alle derivate parziali di tipo ellitico, Berlin, Springer, 1955. Zbl0065.08503
  55. [53] MORREY (C. B.). — Multiple integral problems in the calculus of variations and related topics (Univ. Calif. Publ. Math., nouv. série, vol. 1, 1943, p. 1-130). Zbl0063.04107MR6,180b
  56. [54] MORREY (C. B.). — Second order elliptic systems of differential equations (Contribution to the theory of partial differential equations, Ann. math. Studies n° 33, Princeton, 1954, p. 101-159). Zbl0057.08301MR16,827e
  57. [55] MORREY (C. B.). — A variational method in the theory of harmonic integrals, II (Amer. J. Math., vol. 78, 1956, p. 137-170). Zbl0070.31402MR19,408a
  58. [56] MORREY (C. B.) et EELLS (J.). — A variational method in the theory of harmonic integrals, I (Ann. of Math., vol. 63, 1956, p. 91-128). Zbl0070.09901MR19,407b
  59. [57] MORREY (C. B.) et NIRENBERG (L.). — On the analyticity of the solutions of linear elliptic systems of partial differential equations (Comm. pure appl. Math., vol. 10, 1957, p. 271-290). Zbl0082.09402MR19,654b
  60. [58] MÜLLER (C). — On the behavior of solutions of the differential equation Δu = F(x, u) in the neighbourhood of a point (Comm. pure appl. Math., vol. 7, 1954, p. 505-515). Zbl0056.32201
  61. [59] NASH (J). — Parabolic equations (Proc. nat. Acad. Sc. U.S.A., vol. 43, 1957, p. 754-758). Zbl0078.08704MR19,749b
  62. [60] NIRENBERG (L.). — On nonlinear elliptic partial differential equation and Hölder continuity (Comm. pure appl. Math., vol. 6, 1953, p. 103-156). Zbl0050.09801MR16,367c
  63. [61] NIRENBERG (L.). — On a generalization of quasi-conformal mappings and its application to elliptic partial differential equations (Contribution to the theory of partial differential equations, Ann. math. studies, n° 33, Princeton, 1954, p. 95-100). Zbl0057.08604MR16,592a
  64. [62] NIRENBERG (L). — Remarks on strongly elliptic partial differential equations (Comm. pure appl. Math., vol. 8, 1955, p. 649-676). Zbl0067.07602MR17,742d
  65. [63] NIRENBERG (L.). — Estimates and existence of solutions of elliptic equations (Comm. pure appl. Math., vol. 9, 1956, p. 509-552). Zbl0070.32301MR19,962b
  66. [64] NIRENBERG (L.). — Uniqueness in Cauchy problems for differential equations with constant leading coefficients (Comm. pure appl. Math., vol. 10, 1957, p. 89-105). Zbl0077.09402MR19,147a
  67. [65] PLEIJEL (A.). — On Green's functions for elastic plates with clamped, supported and free edges (Proc. Symposium on spectral theory and differential problems, Oklahoma, 1951, p. 413-437). Zbl0068.08502MR13,948f
  68. [66] PLIS (A.). — The problem of uniqueness for the solution of a system of partial differential equations (Bull. Acad. polon. Sc., Cl. III, 2, 1954, p. 55-57). Zbl0055.32304MR16,258a
  69. [67] RADO (T.). — Über zweidimensionale reguläre Variationsprobleme ... (Math. Ann., vol. 101, 1929, p. 620-632). Zbl55.0899.01JFM55.0899.01
  70. [68] SCHAUDER (J.). — Über lineare elliptische Differentialgleichungen zweiter Ordnung (Math. Z., vol. 38, 1934, p. 257-282). Zbl0008.25502JFM60.0422.01
  71. [69] SCHAUDER (J.). — Numerische Abschätzungen in elliptischen linearen Differentialgleichungen (Stud. Math., vol. 5, 1934, p. 34-42). Zbl0010.20701JFM60.1129.03
  72. [70] SCHWARTZ (L.). — Théorie des distributions, Paris, Hermann, 1950-1951. Zbl0037.07301
  73. [71] SOBOLEV (S. L.). — On a theorem of functional analysis (Mat. Sbornik, nouv. série, vol. 4, 1938, p. 471-497). Zbl0022.14803JFM64.1100.02
  74. [72] VAN HOVE (L.). — Sur l'extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues (Indag. Math., vol. 7, n° 1, 1947, p. 3-8). Zbl0029.26802MR8,522a
  75. [73] VAN HOVE (L.). — Sur le signe de la variation seconde des intégrales multiples à plusieurs fonctions inconnues (Acad. Roy. Belgique, Cl. Sc., Mémoires, vol. 24, fasc. 5, p. 1-68). Zbl0036.34501MR11,730g
  76. [74] VEKUA (N). — On a method of solving boundary value problems for partial differential equations (Doklady Akad. Nauk. S. S. S. R., vol. 101, 1955, p. 593-596). Zbl0064.34601
  77. [75] VISHIK (M. I.). — The method of orthogonal and direct decomposition in the theory of elliptic differential equations (Math. Sbornik, nouv. série, vol. 25, 1949, p. 189-234). Zbl0039.32003MR11,520e
  78. [76] VISHIK (M. I.). — On strongly elliptic systems of differential equations (Mat. Sbornik, nouv. série, vol. 29, 1951, p. 615-676). Zbl0044.09503MR14,174a
  79. [77] VISHIK (M. I.). — On general boundary problems for elliptic differential equations (Trudy Moskov. Mat. Obsč., vol. 1, 1952, p. 187-246). Zbl0131.32301MR14,473d
  80. [78] VON NEUMANN (J.). — Über einen Hilfssatz der Variationsrechnung (Abh. Mat. Sem. Hamburgischen Univ., vol. 8, 1930, p. 28-31). JFM56.0440.04
  81. [79] WEYL (H.). — The method of orthogonal projection in potential theory (Duke Math. J., vol. 7, 1940, p. 411-444). Zbl0026.02001MR2,202aJFM66.0444.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.