La prédicativité

G. Kreisel

Bulletin de la Société Mathématique de France (1960)

  • Volume: 88, page 371-391
  • ISSN: 0037-9484

How to cite

top

Kreisel, G.. "La prédicativité." Bulletin de la Société Mathématique de France 88 (1960): 371-391. <http://eudml.org/doc/86990>.

@article{Kreisel1960,
author = {Kreisel, G.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {mathematical logic},
language = {fre},
pages = {371-391},
publisher = {Société mathématique de France},
title = {La prédicativité},
url = {http://eudml.org/doc/86990},
volume = {88},
year = {1960},
}

TY - JOUR
AU - Kreisel, G.
TI - La prédicativité
JO - Bulletin de la Société Mathématique de France
PY - 1960
PB - Société mathématique de France
VL - 88
SP - 371
EP - 391
LA - fre
KW - mathematical logic
UR - http://eudml.org/doc/86990
ER -

References

top
  1. [1] ADDISON (J. W.). — Review, J. symb. Logic, t. 22, 1957, p. 301-302. 
  2. [2] ADDISON (J. W.). — Abstract, Not. Amer. Math. Soc. t. 5, 1958, p. 845. 
  3. [3] BROUWER (L. E. J.). — Zur Begründung der intuitionischen Mathematik, III, Math. Annalen, t. 96, 1926, p. 451-488. Zbl52.0193.01JFM52.0193.01
  4. [4] FEFERMAN (S.). — Transfinite recursive progressions of axiomatic theories (à paraître). Zbl0117.25402
  5. [5] GÖDEL (Kurt). — The consistency of the axiom of choice and the generalized continuum hypothesis with the axioms of set theory, 2nd ed. — Princeton, Princeton University Press (Annals of Mathematics Studies, 3). Zbl0061.00902
  6. [6] GÖDEL (Kurt). — Russell's mathematical logic in The philosophy of Bertrand Russell, p. 125-153. — New York, Tudor publishing Company, 1944 (Library of living philosophers, 5). 
  7. [7] GRZEGORCZYK (A.). — Elementarily definable analysis, Fund. Math., t. 41, 1955, p. 311-338. Zbl0064.00902MR16,891b
  8. [8] GRZEGORCZYK (A.), MOSTOWSKI (A.), and RYLL-NARDZEWSKI (C.). — The classical and the ω-complete arithmetic, J. symb. Logic, t. 23, 1958, p. 188-206. Zbl0084.24801MR21 #4908
  9. [9] KLEENE (S. C.). — Arithmetical predicates and function quantifiers, Trans. Amer. math. soc., t. 79, 1955, p. 312-340. Zbl0066.25703MR17,4g
  10. [10] KLEENE (S. C.). — Hierarchies of number-theoretic predicates, Bull. Amer. math. Soc., t. 61, 1955, p. 193-213. Zbl0066.25901MR17,4f
  11. [11] KLEENE (S. C.). — Quantification of number-theoretic functions, Compositio Math. t. 14, 1959, p. 23-40. Zbl0085.24701MR21 #2586
  12. [12] KREISEL (G.). — Some uses of metamathematics, British J. Phil. Sc., t. 7 1956, p. 161-173. 
  13. [13] KREISEL (G.). — Analyse de [10], Math. Reviews, t. 17, 1956, p. 4. 
  14. [14] KREISEL (G.). Analysis of the Cantor-Bendixson theorem by means of the analytic hierarchy, Bull. Acad. polon. Sc., t. 7, 1959, p. 621-626. Zbl0093.01401MR22 #9444
  15. [15] KREISEL (G.). — Set theoretic problems suggested by the notion of potential totality, Proceedings of the Symposium on infinitistic methods in the foundations of mathematics (Warsaw, 2-8 septembre 1959), p. 103-140. Zbl0199.01401
  16. [16] KREISEL (G.). — Foundations of intuitionistic logic, Proceedings of the 1960 International Congress for Logic, Methodology and Philosophy of Science (Stanford, 24 août-5 septembre 1960). Zbl0133.24801
  17. [17] KREISEL (G.) et LACOMBE (D.). — Ensembles récursivement mesurables et ensembles récursivement ouverts et fermés, C. R. Acad. Sc. t. 245, 1957, p. 1106-1109. Zbl0079.00901MR22 #3680
  18. [18] LORENZEN (P.). — Logical reflexion and formalism, J. symb. Logic, t. 23, 1958, p. 241-249. Zbl0086.00902MR21 #3322
  19. [19] POINCARÉ (H.). — Sechs. Vorträge ïber ausgewählte Gegenstände aus der reinen Mathematik und mathematischen Physik. — Leipzig, Berlin, B. G. Teubner, 1910. Zbl41.0376.02JFM41.0376.02
  20. [20] SCHÜTTE (Kurt). — Ein widerspruchsloses System der Analysis auf typenfreier Grundlage. Math. Z., t. 61, 1954, p. 160-179. Zbl0056.24601MR16,662a
  21. [21] SHOENFIELD (J. R.). — Abstract, Not. Amer. math. Soc., t. 6, 1959, p. 530-531. 
  22. [22] SPECTOR (Clifford). — Recursive well-orderings, J. symb. Logic, t. 20, 1955. p. 151-163. Zbl0067.00303MR17,570b
  23. [23] SPECTOR (Clifford). — Recursive ordinals and prédicative set theory, Summaries of talks presented at the Summer Institute for symbolic Logic, in 1957, at the Cornell University, p. 377-382. Zbl0207.30902
  24. [24] WANG (Hao). — The formalization of mathematics, J. symb. Logic, t. 19, 1954, p. 241-266. Zbl0056.24503MR16,661d
  25. [25] GANDY (R. O.), KREISEL (G.) and TAIT (W. W.). — Set Existence, Bull. Acad. polon. Sc., t. 8, 1960. Zbl0207.30102MR28 #2964a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.