Semicontinuity of multiple integrals of the calculus of variations in parametric form

Ubiratan D'Ambrosio

Bulletin de la Société Mathématique de France (1967)

  • Volume: 95, page 375-384
  • ISSN: 0037-9484

How to cite

top

D'Ambrosio, Ubiratan. "Semicontinuity of multiple integrals of the calculus of variations in parametric form." Bulletin de la Société Mathématique de France 95 (1967): 375-384. <http://eudml.org/doc/87100>.

@article{DAmbrosio1967,
author = {D'Ambrosio, Ubiratan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {variational calculus},
language = {eng},
pages = {375-384},
publisher = {Société mathématique de France},
title = {Semicontinuity of multiple integrals of the calculus of variations in parametric form},
url = {http://eudml.org/doc/87100},
volume = {95},
year = {1967},
}

TY - JOUR
AU - D'Ambrosio, Ubiratan
TI - Semicontinuity of multiple integrals of the calculus of variations in parametric form
JO - Bulletin de la Société Mathématique de France
PY - 1967
PB - Société mathématique de France
VL - 95
SP - 375
EP - 384
LA - eng
KW - variational calculus
UR - http://eudml.org/doc/87100
ER -

References

top
  1. [1] BESICOVITCH (A. S.). — A general form of the covering principle and relative differentiation of additive functions, I and II, Proc. Cambridge phil. Soc., t. 41, 1945, p. 103-110 ; t. 42, 1946, p. 1-10. Zbl0063.00352
  2. [2] D'AMBROSIO (U.). — Semicontinuity theorems for multiple integrals of the calculus of variations, Anais Acad. Brasil. Ciências, t. 38, 1966, p. 245-248. Zbl0168.09904MR35 #2188
  3. [3] FEDERER (H.) and FLEMING (W. H.). — Normal and integral currents Annals of Math., Series 2, t. 72, 1960, p. 458-520. Zbl0187.31301MR23 #A588
  4. [4] FEDERER (H.). — Currents and area, Trans. Amer. math. Soc., t. 98, 1961, p. 204-233. Zbl0187.31302MR23 #A1006
  5. [5] FLEMING (W. H.). — On the oriented Plateau problem, Rend. Circ. mat. Palermo, Série 2, t. 11, 1962, p. 1-22. Zbl0107.31304
  6. [6] FLEMING (W. H.). — Flat chains over a finite coefficient group, Trans. Amer. math. Soc., t. 121, 1966, p. 160-186. Zbl0136.03602MR32 #2554
  7. [7] MORREY (C. B., Jr). — Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math., t. 2, 1952, p. 25-53. Zbl0046.10803MR14,992a
  8. [8] WHITNEY (H.). — Geometric integration theory. — Princeton, Princeton University Press, 1957 (Princeton mathematical Series, 21). Zbl0083.28204MR19,309c
  9. [9] ZIEMER (W. P.). — Integral currents mod 2, Trans. Amer. math. Soc., t. 105, 1962, p. 496-524. Zbl0136.03603MR27 #268

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.