Sur les équations quasi-elliptiques et les classes de Gevrey

T. Matsuzawa

Bulletin de la Société Mathématique de France (1968)

  • Volume: 96, page 243-263
  • ISSN: 0037-9484

How to cite

top

Matsuzawa, T.. "Sur les équations quasi-elliptiques et les classes de Gevrey." Bulletin de la Société Mathématique de France 96 (1968): 243-263. <http://eudml.org/doc/87111>.

@article{Matsuzawa1968,
author = {Matsuzawa, T.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {partial differential equations},
language = {fre},
pages = {243-263},
publisher = {Société mathématique de France},
title = {Sur les équations quasi-elliptiques et les classes de Gevrey},
url = {http://eudml.org/doc/87111},
volume = {96},
year = {1968},
}

TY - JOUR
AU - Matsuzawa, T.
TI - Sur les équations quasi-elliptiques et les classes de Gevrey
JO - Bulletin de la Société Mathématique de France
PY - 1968
PB - Société mathématique de France
VL - 96
SP - 243
EP - 263
LA - fre
KW - partial differential equations
UR - http://eudml.org/doc/87111
ER -

References

top
  1. [1] AGMON (S.), DOUGLIS (A.) and NIRENBERG (L.). — Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. pure and appl. Math., t. 12, 1959, p. 623-727. Zbl0093.10401MR23 #A2610
  2. [2] CAVALUCCI (Angelo). — Sulle proprietà differenziali delle soluzioni delle equazioni quasi-ellittiche, Annali di Mat. pura ed appl., Série 4, t. 67, 1965, p. 143-168. Zbl0142.08302MR31 #6048
  3. [3] CAVALLUCCI (Angelo). — Sulla regorarità delle soluzioni delle equazioni quasi-ellittiche in un semispazio, Rend. Sem. mat. fis. Modena, t. 17, 1967, p. 1-18. Zbl0159.14001
  4. [4] FRIBERG (J.). — Estimates for partially hypoelliptic differential operators, Medd. Lunds Univ. Mat. Semin., t. 17, 1963, p. 96 pages. Zbl0139.28403MR28 #349
  5. [5] HÖRMANDER (Lars). — Linear partial differential operators. — Berlin, Springer-Verlag, 1963 (Grundlehrender der mathematischen Wissenschaften, 116). Zbl0108.09301
  6. [6] LIONS (J.-L.) et MAGENES (E.). — Espaces du type de Gevrey et problème aux limites pour diverses classes d'équations d'évolution, Annali di Mat. pura ed appl., Série 4, t. 72, 1966, p. 343-394. Zbl0173.43206MR34 #7926
  7. [7] MAGENES (E.) et STAMPACCHIA (G.). — I problemi al contorno per le equazioni differenziali di tipo ellittico, Annali Scuola norm. Pisa, Série 3, t. 12, 1958, p. 247-357. Zbl0082.09601MR23 #A1140
  8. [8] MATSUZAWA (Tadato). — On quasi-elliptic boundary problems (à paraître). 
  9. [9] MORREY (C. B., Jr) and NIRENBERG (L.). — On the analyticity of the solutions of linear elliptic systems of partial differential equations, Comm. pure and appl. Math., t. 10, 1957, p. 271-290. Zbl0082.09402MR19,654b
  10. [10] MURTHY (M. K. V.). — A remark on the regularity at the boundary for solutions of elliptic equations, Annali Scuola norm. Pisa, Série 3, t. 15, 1961, p. 355-370. Zbl0111.09402MR25 #4246
  11. [11] SCHECHTER (Martin). — On the dominance of partial differential operators, II, Annali Scuola norm. Pisa, Série 3, t. 18, 1964, p. 255-282. Zbl0125.05903MR32 #6050
  12. [12] SLOBODECKIJ (L.). — Generalized Sobolev spaces and their application to boundary problems for partial differential equations, Amer. math. Soc. Transl., Séries 2, t. 57, 1966, p. 207-275. Zbl0192.22801
  13. [13] VOLEVIČ (L. R.). — Propriété locale des solutions de système quasi-elliptique [en russe], Mat. Sbornik, N. S., t. 59, 1962, p. 3-52. 

NotesEmbed ?

top

You must be logged in to post comments.