Sur les équations quasi-elliptiques et les classes de Gevrey

T. Matsuzawa

Bulletin de la Société Mathématique de France (1968)

  • Volume: 96, page 243-263
  • ISSN: 0037-9484

How to cite

top

Matsuzawa, T.. "Sur les équations quasi-elliptiques et les classes de Gevrey." Bulletin de la Société Mathématique de France 96 (1968): 243-263. <http://eudml.org/doc/87111>.

@article{Matsuzawa1968,
author = {Matsuzawa, T.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {partial differential equations},
language = {fre},
pages = {243-263},
publisher = {Société mathématique de France},
title = {Sur les équations quasi-elliptiques et les classes de Gevrey},
url = {http://eudml.org/doc/87111},
volume = {96},
year = {1968},
}

TY - JOUR
AU - Matsuzawa, T.
TI - Sur les équations quasi-elliptiques et les classes de Gevrey
JO - Bulletin de la Société Mathématique de France
PY - 1968
PB - Société mathématique de France
VL - 96
SP - 243
EP - 263
LA - fre
KW - partial differential equations
UR - http://eudml.org/doc/87111
ER -

References

top
  1. [1] AGMON (S.), DOUGLIS (A.) and NIRENBERG (L.). — Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. pure and appl. Math., t. 12, 1959, p. 623-727. Zbl0093.10401MR23 #A2610
  2. [2] CAVALUCCI (Angelo). — Sulle proprietà differenziali delle soluzioni delle equazioni quasi-ellittiche, Annali di Mat. pura ed appl., Série 4, t. 67, 1965, p. 143-168. Zbl0142.08302MR31 #6048
  3. [3] CAVALLUCCI (Angelo). — Sulla regorarità delle soluzioni delle equazioni quasi-ellittiche in un semispazio, Rend. Sem. mat. fis. Modena, t. 17, 1967, p. 1-18. Zbl0159.14001
  4. [4] FRIBERG (J.). — Estimates for partially hypoelliptic differential operators, Medd. Lunds Univ. Mat. Semin., t. 17, 1963, p. 96 pages. Zbl0139.28403MR28 #349
  5. [5] HÖRMANDER (Lars). — Linear partial differential operators. — Berlin, Springer-Verlag, 1963 (Grundlehrender der mathematischen Wissenschaften, 116). Zbl0108.09301
  6. [6] LIONS (J.-L.) et MAGENES (E.). — Espaces du type de Gevrey et problème aux limites pour diverses classes d'équations d'évolution, Annali di Mat. pura ed appl., Série 4, t. 72, 1966, p. 343-394. Zbl0173.43206MR34 #7926
  7. [7] MAGENES (E.) et STAMPACCHIA (G.). — I problemi al contorno per le equazioni differenziali di tipo ellittico, Annali Scuola norm. Pisa, Série 3, t. 12, 1958, p. 247-357. Zbl0082.09601MR23 #A1140
  8. [8] MATSUZAWA (Tadato). — On quasi-elliptic boundary problems (à paraître). 
  9. [9] MORREY (C. B., Jr) and NIRENBERG (L.). — On the analyticity of the solutions of linear elliptic systems of partial differential equations, Comm. pure and appl. Math., t. 10, 1957, p. 271-290. Zbl0082.09402MR19,654b
  10. [10] MURTHY (M. K. V.). — A remark on the regularity at the boundary for solutions of elliptic equations, Annali Scuola norm. Pisa, Série 3, t. 15, 1961, p. 355-370. Zbl0111.09402MR25 #4246
  11. [11] SCHECHTER (Martin). — On the dominance of partial differential operators, II, Annali Scuola norm. Pisa, Série 3, t. 18, 1964, p. 255-282. Zbl0125.05903MR32 #6050
  12. [12] SLOBODECKIJ (L.). — Generalized Sobolev spaces and their application to boundary problems for partial differential equations, Amer. math. Soc. Transl., Séries 2, t. 57, 1966, p. 207-275. Zbl0192.22801
  13. [13] VOLEVIČ (L. R.). — Propriété locale des solutions de système quasi-elliptique [en russe], Mat. Sbornik, N. S., t. 59, 1962, p. 3-52. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.