Integer-valued continuous functions
Bulletin de la Société Mathématique de France (1969)
- Volume: 97, page 275-283
- ISSN: 0037-9484
Access Full Article
topHow to cite
topReferences
top- [1] ALLING (N. L.). — Rings of continuous integer-valued functions and nonstandard arithmetic, Trans. Amer. math. Soc., t. 118, 1965, p. 498-525. Zbl0143.01002MR32 #2431
- [2] FUCHS (L.). — Partially ordered algebraic systems. — Oxford, Pergamon Press, 1963 (International Series of Monographs on pure and applied Mathematics, 28). Zbl0137.02001MR30 #2090
- [3] HENRIKSEN (M.). — On the equivalence of the ring, lattice, and semigroup of continuous functions, Proc. Amer. math. Soc., t. 7, 1956, p. 959-960. Zbl0077.10402MR18,559a
- [4] HENRIKSEN (M.) and ISBELL (J. R.). — Lattice-ordered rings and function rings, Pacific J. Math., t. 12, 1962, p. 533-566. Zbl0111.04302MR27 #3670
- [5] HENRIKSEN (M.) and JERISON (M.). — The space of minimal prime ideals of a commutative ring, Trans. Amer. math. Soc., t. 115, 1965, p. 110-130. Zbl0147.29105MR33 #3086
- [6] KIST (J.). — Minimal prime ideals in commutative semigroups, Proc. London math. Soc., t. 13, 1963, p. 31-50. Zbl0108.04004MR26 #1387
- [7] PIERCE (R. S.). — Rings of integer-valued continuous functions, Trans. Amer. math. Soc., t. 100, 1961, p. 371-394. Zbl0196.15401MR24 #A1289
- [8] SANKARAN (N.). — Rings of integer-valued functions, 29th Annual Conference of the Indian math. Soc. [1963, Madras], Abstracts, Mathematics Student, t. 32, 1964, nos 3-4, Appendix, p. 28.
- [9] SUBRAMANIAN (H.). — Kaplansky's Theorem for f-rings, Math. Annalen, t. 179, 1968, p. 70-73. Zbl0169.05303MR38 #5681
- [10] SUBRAMANIAN (H.). — l-prime ideals in f-rings, Bull. Soc. math. France, t. 95, 1967, p. 193-204. Zbl0161.03901MR36 #6332