Commutative semigroups whose lattice of congruences is a chain

T. Tamura

Bulletin de la Société Mathématique de France (1969)

  • Volume: 97, page 369-380
  • ISSN: 0037-9484

How to cite

top

Tamura, T.. "Commutative semigroups whose lattice of congruences is a chain." Bulletin de la Société Mathématique de France 97 (1969): 369-380. <http://eudml.org/doc/87135>.

@article{Tamura1969,
author = {Tamura, T.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {generalized groups, semigroups},
language = {eng},
pages = {369-380},
publisher = {Société mathématique de France},
title = {Commutative semigroups whose lattice of congruences is a chain},
url = {http://eudml.org/doc/87135},
volume = {97},
year = {1969},
}

TY - JOUR
AU - Tamura, T.
TI - Commutative semigroups whose lattice of congruences is a chain
JO - Bulletin de la Société Mathématique de France
PY - 1969
PB - Société mathématique de France
VL - 97
SP - 369
EP - 380
LA - eng
KW - generalized groups, semigroups
UR - http://eudml.org/doc/87135
ER -

References

top
  1. [1] CLIFFORD (A. H.). — Naturally totally ordered commutative semigroups, Amer. J. Math., t. 76, 1954, p. 631-646. Zbl0055.01503MR15,930b
  2. [2] CLIFFORD (A. H.) and PRESTON (G. B.). — The algebraic theory of semigroups, vol. 1. — Providence, American mathematical Society, 1961 (Mathematical Surveys, 7). Zbl0111.03403MR24 #A2627
  3. [3] FUCHS (L.). — Abelian groups. — Budapest, Publishing House of Hungarian Academy of Science, 1958. Zbl0091.02704MR21 #5672
  4. [4] SCHENKMAN (E.). — Group theory. — Princeton (New Jersey), D. Van Nostrand, 1965. Zbl0133.27302MR33 #5702
  5. [5] ŠEVRIN (L. N.). — Semigroups with certain types of sub-semigroup lattices, Soviet Math. Dokl., t. 2, 1961, p. 737-740. Zbl0105.01504
  6. [6] TAMURA (T.). — Note on unipotent inversible semigroups, Kodai math. Sem. Rep., t. 3, 1954, p. 93-95. Zbl0058.01502MR16,443h
  7. [7] TAMURA (T.) and KIMURA (N.). — On decomposition of a commutative semigroup, Kodai math. Sem. Rep., t. 4, 1954, p. 109-112. Zbl0058.01503MR16,670f
  8. [8] TAMURA (T.). — On a monoid whose submonoids form a chain, J. Gakugei, Tokushima Univ., t. 5, 1954, p. 8-16. Zbl0058.01404MR16,1085b
  9. [9] TAMURA (T.) and KIMURA (N.). — Existence of greatest decomposition of a semigroup, Kodai math. Sem. Rep., t. 7, 1955, p. 83-84. Zbl0067.01003MR18,192b
  10. [10] TAMURA (T.). — Indecomposable completely simple semigroups except groups, Osaka math. J., t. 8, 1956, p. 35-42. Zbl0070.01803MR18,282a
  11. [11] TAMURA (T.). — The theory of construction of finite semigroups, I, Osaka math. J., t. 8, 1956, p. 243-261. Zbl0073.01003MR18,717e
  12. [12] TAMURA (T.). — Commutative nonpotent archimedean semigroup with cancellation law, I, J. Gakugei, Tokushima Univ., t. 8, 1957, p. 5-11. Zbl0079.25103MR20 #3224
  13. [13] TAMURA (T.). — Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Jap. Acad., t. 40, 1964, p. 777-780. Zbl0135.04001MR31 #3530
  14. [14] TAMURA (T.). — Notes on commutative archimedean semigroups, I, Proc. Japan Acad., t. 42, 1966, p. 35-40. Zbl0163.02202MR36 #2543
  15. [15] TAMURA (T.). — Decomposability of extension and its application to finite semigroups, Proc. Japan Acad., t. 43, 1967, p. 93-97. Zbl0189.02003MR36 #292
  16. [16] TAMURA (T.). — Construction of trees and commutative archimedean semigroups, Math. Nachrichten, Band 36, 1968, p. 255-287. Zbl0155.04201MR37 #6222
  17. [17] TULLY (E. J.). — H-commutative semigroups in which each homomorphism is uniquely determined by its kernel, Pacific J. of Math. (to be published). Zbl0313.20042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.