Commutative semigroups whose lattice of congruences is a chain
Bulletin de la Société Mathématique de France (1969)
- Volume: 97, page 369-380
- ISSN: 0037-9484
Access Full Article
topHow to cite
topTamura, T.. "Commutative semigroups whose lattice of congruences is a chain." Bulletin de la Société Mathématique de France 97 (1969): 369-380. <http://eudml.org/doc/87135>.
@article{Tamura1969,
author = {Tamura, T.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {generalized groups, semigroups},
language = {eng},
pages = {369-380},
publisher = {Société mathématique de France},
title = {Commutative semigroups whose lattice of congruences is a chain},
url = {http://eudml.org/doc/87135},
volume = {97},
year = {1969},
}
TY - JOUR
AU - Tamura, T.
TI - Commutative semigroups whose lattice of congruences is a chain
JO - Bulletin de la Société Mathématique de France
PY - 1969
PB - Société mathématique de France
VL - 97
SP - 369
EP - 380
LA - eng
KW - generalized groups, semigroups
UR - http://eudml.org/doc/87135
ER -
References
top- [1] CLIFFORD (A. H.). — Naturally totally ordered commutative semigroups, Amer. J. Math., t. 76, 1954, p. 631-646. Zbl0055.01503MR15,930b
- [2] CLIFFORD (A. H.) and PRESTON (G. B.). — The algebraic theory of semigroups, vol. 1. — Providence, American mathematical Society, 1961 (Mathematical Surveys, 7). Zbl0111.03403MR24 #A2627
- [3] FUCHS (L.). — Abelian groups. — Budapest, Publishing House of Hungarian Academy of Science, 1958. Zbl0091.02704MR21 #5672
- [4] SCHENKMAN (E.). — Group theory. — Princeton (New Jersey), D. Van Nostrand, 1965. Zbl0133.27302MR33 #5702
- [5] ŠEVRIN (L. N.). — Semigroups with certain types of sub-semigroup lattices, Soviet Math. Dokl., t. 2, 1961, p. 737-740. Zbl0105.01504
- [6] TAMURA (T.). — Note on unipotent inversible semigroups, Kodai math. Sem. Rep., t. 3, 1954, p. 93-95. Zbl0058.01502MR16,443h
- [7] TAMURA (T.) and KIMURA (N.). — On decomposition of a commutative semigroup, Kodai math. Sem. Rep., t. 4, 1954, p. 109-112. Zbl0058.01503MR16,670f
- [8] TAMURA (T.). — On a monoid whose submonoids form a chain, J. Gakugei, Tokushima Univ., t. 5, 1954, p. 8-16. Zbl0058.01404MR16,1085b
- [9] TAMURA (T.) and KIMURA (N.). — Existence of greatest decomposition of a semigroup, Kodai math. Sem. Rep., t. 7, 1955, p. 83-84. Zbl0067.01003MR18,192b
- [10] TAMURA (T.). — Indecomposable completely simple semigroups except groups, Osaka math. J., t. 8, 1956, p. 35-42. Zbl0070.01803MR18,282a
- [11] TAMURA (T.). — The theory of construction of finite semigroups, I, Osaka math. J., t. 8, 1956, p. 243-261. Zbl0073.01003MR18,717e
- [12] TAMURA (T.). — Commutative nonpotent archimedean semigroup with cancellation law, I, J. Gakugei, Tokushima Univ., t. 8, 1957, p. 5-11. Zbl0079.25103MR20 #3224
- [13] TAMURA (T.). — Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Jap. Acad., t. 40, 1964, p. 777-780. Zbl0135.04001MR31 #3530
- [14] TAMURA (T.). — Notes on commutative archimedean semigroups, I, Proc. Japan Acad., t. 42, 1966, p. 35-40. Zbl0163.02202MR36 #2543
- [15] TAMURA (T.). — Decomposability of extension and its application to finite semigroups, Proc. Japan Acad., t. 43, 1967, p. 93-97. Zbl0189.02003MR36 #292
- [16] TAMURA (T.). — Construction of trees and commutative archimedean semigroups, Math. Nachrichten, Band 36, 1968, p. 255-287. Zbl0155.04201MR37 #6222
- [17] TULLY (E. J.). — H-commutative semigroups in which each homomorphism is uniquely determined by its kernel, Pacific J. of Math. (to be published). Zbl0313.20042
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.