Symplectic structure in the enveloping algebra of a Lie algebra

Anthony Joseph

Bulletin de la Société Mathématique de France (1974)

  • Volume: 102, page 75-83
  • ISSN: 0037-9484

How to cite

top

Joseph, Anthony. "Symplectic structure in the enveloping algebra of a Lie algebra." Bulletin de la Société Mathématique de France 102 (1974): 75-83. <http://eudml.org/doc/87240>.

@article{Joseph1974,
author = {Joseph, Anthony},
journal = {Bulletin de la Société Mathématique de France},
language = {eng},
pages = {75-83},
publisher = {Société mathématique de France},
title = {Symplectic structure in the enveloping algebra of a Lie algebra},
url = {http://eudml.org/doc/87240},
volume = {102},
year = {1974},
}

TY - JOUR
AU - Joseph, Anthony
TI - Symplectic structure in the enveloping algebra of a Lie algebra
JO - Bulletin de la Société Mathématique de France
PY - 1974
PB - Société mathématique de France
VL - 102
SP - 75
EP - 83
LA - eng
UR - http://eudml.org/doc/87240
ER -

References

top
  1. [1] DIXMIER (J.). — Sur les représentations unitaires des groupes de Lie nilpotents, II., Bull. Soc. math. Fr., t. 85, 1957, p. 325-388. Zbl0085.10303MR20 #1928
  2. [2] GEL'FAND (I. M.) and KIRILLOV (A. A.). — Fields associated with enveloping algebras of Lie algebras, Soviet Mathematics, t. 7, 1966, p. 407-409 [en russe] ; Doklady Akad. Nauk SSSR, t. 167, 1966, p. 503-505. Zbl0149.02903
  3. [3] GEL'FAND (I. M.) and KIRILLOV (A. A.). — Sur les corps liés aux algèbres enveloppantes des algèbres de Lie. — Paris, Presses universitaires de France, 1966 (Institut des Hautes Études Scientifiques, Publications mathématiques, 31, p. 5-19). Zbl0144.02104MR34 #7731
  4. [4] GEL'FAND (I. M.) and KIRILLOV (A. A.). — Structure of the Lie field connected with a split semisimple Lie algebra [en russe], Funkcional'nyj Analiz, t. 3, 1969, fasc. 1, p. 7-26. Zbl0244.17007MR39 #2827
  5. [5] HELGASON (S.). — Differential geometry and symmetric spaces. — New York, Academic Press, 1962 (Pure and applied Mathematics, Academic Press, 12). Zbl0111.18101MR26 #2986
  6. [6] JACOBSON (N.). — Lie algebras. — New York, Interscience Publishers, 1962 (Interscience Tracts in pure and applied Mathematics, 10). Zbl0121.27504
  7. [7] JOSEPH (A.). — Commuting polynomials in quantum canonical operators and realizations of Lie algebras, J. of math. Phys., t. 13, 1972, p. 351-357. Zbl0238.17004MR45 #6292
  8. [8] JOSEPH (A.). — Gel'fand-Kirillov dimension for algebras associated with the Weyl algebra, Ann. Inst. H. Poincaré, série A, t. 17, 1973, p. 325-336. Zbl0287.16011MR49 #2868
  9. [9] JOSEPH (A.). — Proof of the Gel'fand-Kirillov conjecture for solvable Lie algebras, Proc. Amer. math. Soc. (à paraître). Zbl0293.17006
  10. [10] LANG (S.). — Algebra. — New York, Addison-Wesley publishing Company, 1965 (Addison-Wesley Series in Mathematics). Zbl0193.34701MR33 #5416
  11. [11] NGHIÊM (X. H.). — Sur certains sous-corps commutatifs du corps enveloppant d'une algèbre de Lie résoluble, Bull. Sc. math., série 2, t. 96, 1972, p. 111-128. Zbl0239.17007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.