Commutation theorems and generalized commutation relations

Marc A. Rieffel

Bulletin de la Société Mathématique de France (1976)

  • Volume: 104, page 205-224
  • ISSN: 0037-9484

How to cite

top

Rieffel, Marc A.. "Commutation theorems and generalized commutation relations." Bulletin de la Société Mathématique de France 104 (1976): 205-224. <http://eudml.org/doc/87274>.

@article{Rieffel1976,
author = {Rieffel, Marc A.},
journal = {Bulletin de la Société Mathématique de France},
language = {eng},
pages = {205-224},
publisher = {Société mathématique de France},
title = {Commutation theorems and generalized commutation relations},
url = {http://eudml.org/doc/87274},
volume = {104},
year = {1976},
}

TY - JOUR
AU - Rieffel, Marc A.
TI - Commutation theorems and generalized commutation relations
JO - Bulletin de la Société Mathématique de France
PY - 1976
PB - Société mathématique de France
VL - 104
SP - 205
EP - 224
LA - eng
UR - http://eudml.org/doc/87274
ER -

References

top
  1. [1] ARAKI (H.). — A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. math. Phys., t. 4, 1963, p. 1343-1362. Zbl0132.43805MR28 #1889
  2. [2] BLATTNER (R. J.). — On a theorem of G. W. Mackey, Bull. Amer. math. Soc., t. 68, 1962, p. 585-587. Zbl0122.35202MR25 #5135
  3. [3] BOURBAKI (N.). — Intégration, Chap. 7 et 8. — Paris, Hermann, 1963 (Act. scient. et ind., 1306 ; Bourbaki, 29). Zbl0156.03204
  4. [4] BRUHAT (F.). — Sur les représentations induites des groupes de Lie, Bull. Soc. math. France, t. 84, 1956, p. 97-205 (Thèse Sc. math. Paris, 1955). Zbl0074.10303MR18,907i
  5. [5] DIXMIER (J.). — Les algèbres d'opérateurs dans l'espace hilbertien. — Paris, Gauthier-Villars, 1957 (Cahiers scientifiques, 25). Zbl0088.32304
  6. [6] DUNFORD (N.) and SCHWARTZ (J.). — Linear operators, II. — New York, Interscience, 1963. Zbl0128.34803
  7. [7] EFFROS (E.) and HAHN (F.). — Locally compact transformation groups and C*-algebras. — Providence, American mathematical Society, 1967 (Memoirs Amer. math. Soc., 75). Zbl0184.17002
  8. [8] MACKEY (G. W.). — Unitary representations of group extensions, I, Acta Math., Uppsala, t. 99, 1958, p. 265-311. Zbl0082.11301MR20 #4789
  9. [9] MURRAY (F. J.) and VON NEUMANN (J.). — On rings of operators, Annals of Math., t. 37, 1936, p. 116-229. Zbl0014.16101JFM62.0449.03
  10. [10] NIELSEN (O. A.). — The Mackey-Blattner theorem and Takesaki's generalized commutation relation for locally compact groups, Duke Math., J., 40, 1973, p. 105-114. Zbl0256.22010MR46 #9233
  11. [11] RIEFFEL (M. A.). — Square-integrable representations of Hilbert algebras, J. funct. Anal., t. 3, 1969, p. 265-300. Zbl0174.44902MR39 #6094
  12. [12] RIEFFEL (M. A.). — Induced representations of C⋆-algebras, Advances Math., t. 13, 1974, p. 176-257. Zbl0284.46040MR50 #5489
  13. [13] RIEFFEL (M. A.). — Morita equivalence for C⋆-algebras and W⋆-algebras, J. pure and appl. Algebra, t. 5, 1974, p. 51-96. Zbl0295.46099MR51 #3912
  14. [14] RIEFFEL (M. A.). — A commutation theorem and duality for free Bose fields, Comm. math. Phys., t. 39, 1974, p. 153-164. Zbl0296.46069MR51 #9700
  15. [15] RIEFFEL (M. A.). — Strong Morita equivalence of certain transformation group C⋆-algebras, Math. Ann. (to appear). Zbl0328.22013
  16. [16] RIEFFEL (M. A.) and VAN DAELE (A.). — The commutation theorem for tensor products of von Neumann algebras, Bull. London math. Soc., t. 7, 1975, p. 257-260. Zbl0362.46048MR52 #3977
  17. [17] SAKAI (S.). — C⋆-algebras and W⋆-algebras. — Berlin, Springer-Verlag, 1971 (Ergebnisse der Mathematik, 60). Zbl0219.46042MR56 #1082
  18. [18] TAKESAKI (M.). — Covariant representations of C⋆-algebras and their locally compact automorphism groups, Acta Math., Uppsala, t. 119, 1967, p. 273-303. Zbl0163.36802MR37 #774
  19. [19] TAKESAKI (M.). — A generalized commutation relation for the regular representation, Bull. Soc. math. France, t. 97, 1969, p. 289-297. Zbl0188.20101MR40 #7831
  20. [20] TAKESAKI (M.) and TATSUUMA (N.). — Duality and subgroups, Annals of Math., t. 93, 1971, p. 344-364. Zbl0201.45503MR43 #7557
  21. [21] VOWDEN (B. J.). — Normalcy in von Neumann algebras, Proc. London math. Soc. t. 27, 1973, p. 88-100. Zbl0264.46065MR47 #9302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.