Propriétés topologiques de [ X , Y ] et fantômes de finitude

Jean-Paul Pezennec

Bulletin de la Société Mathématique de France (1979)

  • Volume: 107, page 113-126
  • ISSN: 0037-9484

How to cite

top

Pezennec, Jean-Paul. "Propriétés topologiques de $[X,Y]$ et fantômes de finitude." Bulletin de la Société Mathématique de France 107 (1979): 113-126. <http://eudml.org/doc/87338>.

@article{Pezennec1979,
author = {Pezennec, Jean-Paul},
journal = {Bulletin de la Société Mathématique de France},
keywords = {phantom maps; topological properties of the space of homotopy classes of maps},
language = {fre},
pages = {113-126},
publisher = {Société mathématique de France},
title = {Propriétés topologiques de $[X,Y]$ et fantômes de finitude},
url = {http://eudml.org/doc/87338},
volume = {107},
year = {1979},
}

TY - JOUR
AU - Pezennec, Jean-Paul
TI - Propriétés topologiques de $[X,Y]$ et fantômes de finitude
JO - Bulletin de la Société Mathématique de France
PY - 1979
PB - Société mathématique de France
VL - 107
SP - 113
EP - 126
LA - fre
KW - phantom maps; topological properties of the space of homotopy classes of maps
UR - http://eudml.org/doc/87338
ER -

References

top
  1. [1] ADAMS (J. F.). — A variant of E. H. Brown's representability theorem, Topology, t. 10, 1971, p. 185-198. Zbl0197.19604MR44 #1018
  2. [2] BOUSFIELD (A. K.), KAN (D. M.). — Homotopy limits, completions and localizations. — Berlin, Springer-Verlag, 1972 (Lecture Notes in Mathematics, 304). Zbl0259.55004MR51 #1825
  3. [3] FUCHS (L.). — Infinite abelian groups, I. — New York, Academic Press, 1970 (Pure and applied Mathematics, Academic Press, 36). Zbl0209.05503MR41 #333
  4. [4] GRAY (B. I.). — Spaces of the same n-type, for all n, Topology, t. 5, 1966, p. 241-243. Zbl0149.20102MR33 #4929
  5. [5] HUBER (M.) et MEIER (W.). — Cohomology theories and infinite CW-complexes, Comment. Math. Helvet. (à paraître). Zbl0432.55002
  6. [6] JENSEN (C. U.). — Les foncteurs dérivés de lim proj et leurs applications en théorie des modules. — Berlin, Springer-Verlag, 1972 (Lecture Notes in Mathematics, 254). Zbl0238.18007MR53 #10874
  7. [7] MILNOR (J.). — On spaces having the homotopy type of a CW-complex, Trans. Amer. math. Soc., t. 90, 1971, p. 272-280. Zbl0084.39002MR20 #6700
  8. [8] SULLIVAN (D.). — Geometric topology, Part I. — Cambridge, M.I.T. Press, 1970. 
  9. [9] YOSIMURA (Z. I.). — Universal coefficient sequences for cohomology theories of CW-spectra, Osaka J. Math., t. 12, 1975, p. 305-323. Zbl0309.55008MR52 #9212

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.