Propriétés topologiques de [ X , Y ] et fantômes de finitude

Jean-Paul Pezennec

Bulletin de la Société Mathématique de France (1979)

  • Volume: 107, page 113-126
  • ISSN: 0037-9484

How to cite

top

Pezennec, Jean-Paul. "Propriétés topologiques de $[X,Y]$ et fantômes de finitude." Bulletin de la Société Mathématique de France 107 (1979): 113-126. <http://eudml.org/doc/87338>.

@article{Pezennec1979,
author = {Pezennec, Jean-Paul},
journal = {Bulletin de la Société Mathématique de France},
keywords = {phantom maps; topological properties of the space of homotopy classes of maps},
language = {fre},
pages = {113-126},
publisher = {Société mathématique de France},
title = {Propriétés topologiques de $[X,Y]$ et fantômes de finitude},
url = {http://eudml.org/doc/87338},
volume = {107},
year = {1979},
}

TY - JOUR
AU - Pezennec, Jean-Paul
TI - Propriétés topologiques de $[X,Y]$ et fantômes de finitude
JO - Bulletin de la Société Mathématique de France
PY - 1979
PB - Société mathématique de France
VL - 107
SP - 113
EP - 126
LA - fre
KW - phantom maps; topological properties of the space of homotopy classes of maps
UR - http://eudml.org/doc/87338
ER -

References

top
  1. [1] ADAMS (J. F.). — A variant of E. H. Brown's representability theorem, Topology, t. 10, 1971, p. 185-198. Zbl0197.19604MR44 #1018
  2. [2] BOUSFIELD (A. K.), KAN (D. M.). — Homotopy limits, completions and localizations. — Berlin, Springer-Verlag, 1972 (Lecture Notes in Mathematics, 304). Zbl0259.55004MR51 #1825
  3. [3] FUCHS (L.). — Infinite abelian groups, I. — New York, Academic Press, 1970 (Pure and applied Mathematics, Academic Press, 36). Zbl0209.05503MR41 #333
  4. [4] GRAY (B. I.). — Spaces of the same n-type, for all n, Topology, t. 5, 1966, p. 241-243. Zbl0149.20102MR33 #4929
  5. [5] HUBER (M.) et MEIER (W.). — Cohomology theories and infinite CW-complexes, Comment. Math. Helvet. (à paraître). Zbl0432.55002
  6. [6] JENSEN (C. U.). — Les foncteurs dérivés de lim proj et leurs applications en théorie des modules. — Berlin, Springer-Verlag, 1972 (Lecture Notes in Mathematics, 254). Zbl0238.18007MR53 #10874
  7. [7] MILNOR (J.). — On spaces having the homotopy type of a CW-complex, Trans. Amer. math. Soc., t. 90, 1971, p. 272-280. Zbl0084.39002MR20 #6700
  8. [8] SULLIVAN (D.). — Geometric topology, Part I. — Cambridge, M.I.T. Press, 1970. 
  9. [9] YOSIMURA (Z. I.). — Universal coefficient sequences for cohomology theories of CW-spectra, Osaka J. Math., t. 12, 1975, p. 305-323. Zbl0309.55008MR52 #9212

NotesEmbed ?

top

You must be logged in to post comments.