Série de Poincaré et systèmes de paramètres pour les invariants des formes binaires de degré 7

Jacques Dixmier

Bulletin de la Société Mathématique de France (1982)

  • Volume: 110, page 303-318
  • ISSN: 0037-9484

How to cite

top

Dixmier, Jacques. "Série de Poincaré et systèmes de paramètres pour les invariants des formes binaires de degré 7." Bulletin de la Société Mathématique de France 110 (1982): 303-318. <http://eudml.org/doc/87419>.

@article{Dixmier1982,
author = {Dixmier, Jacques},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Poincare series; invariant ring; homogeneous system of parameters; bilinear forms},
language = {fre},
pages = {303-318},
publisher = {Société mathématique de France},
title = {Série de Poincaré et systèmes de paramètres pour les invariants des formes binaires de degré 7},
url = {http://eudml.org/doc/87419},
volume = {110},
year = {1982},
}

TY - JOUR
AU - Dixmier, Jacques
TI - Série de Poincaré et systèmes de paramètres pour les invariants des formes binaires de degré 7
JO - Bulletin de la Société Mathématique de France
PY - 1982
PB - Société mathématique de France
VL - 110
SP - 303
EP - 318
LA - fre
KW - Poincare series; invariant ring; homogeneous system of parameters; bilinear forms
UR - http://eudml.org/doc/87419
ER -

References

top
  1. [1] BROUWER (A. E.) and COHEN (A. M.). — The Poincaré series of the polynomials invariant under SU2 in its irreducible representation of degree ≤17, preprint of the Mathematisch Centrum, Amsterdam, 1979. Zbl0417.22008
  2. [2] GORDAN (P.), Vorlesungen über Invariantentheorie, bd. II, Leipzig, Teubner, 1887. JFM19.0099.01
  3. [3] GRACE (J. H.) and YOUNG (A.). — The Algebra of Invariants, Cambridge Univ. Press, 1903. JFM34.0114.01
  4. [4] HAMMOND (J.). — A simple proof of the existence of irreducible invariants of degrees 20 and 30 for the binary seventhic, Math. Ann., t. 36, 1980, p. 255-261. Zbl22.0146.02JFM22.0146.02
  5. [5] HOCHSTER (M.) and ROBERTS (J. L.). — Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., t. 13, 1974, p. 115-175. Zbl0289.14010MR50 #311
  6. [6] HUFFMAN (W. C.) and SLOANE (N. J. A.). — Most primitive groups have messy invariants, Advances in Math., t. 32, 1979, p. 118-127. Zbl0421.20005MR80e:20056
  7. [7] SHIODA (T.). — On the graded ring of invariants of binary octavics, Amer. J. Math., t. 89, 1967, p. 1022-1046. Zbl0188.53304MR36 #3790
  8. [8] SPRINGER (T. A.). — On the invariant theory of SU2, Indagationes Math., t. 42, 1980, p. 339-345. Zbl0449.22017MR83k:20041
  9. [9] STANLEY (R. P.). — Hilbert functions of graded algebras, Advances in Math., t. 28, 1978, p. 57-83. Zbl0384.13012MR58 #5637
  10. [10] SYLVESTER (J. J.) and FRANKLIN (F.). — Tables of generating functions and grundforms for the binary quantics of the first ten orders, Amer. J. Math., t. 2, 1879, p. 223-251. JFM11.0082.02
  11. [11] VON GALL (F.). — Das vollständige Formensystem der binären Form 7ter Ordnung, Math. Ann., t. 31, 1888, p. 318-336. Zbl20.0128.01JFM20.0128.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.