Riesz spaces valued measures and processes

Nassif Ghoussoub

Bulletin de la Société Mathématique de France (1982)

  • Volume: 110, page 233-257
  • ISSN: 0037-9484

How to cite

top

Ghoussoub, Nassif. "Riesz spaces valued measures and processes." Bulletin de la Société Mathématique de France 110 (1982): 233-257. <http://eudml.org/doc/87431>.

@article{Ghoussoub1982,
author = {Ghoussoub, Nassif},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Riesz spaces valued measures and processes; Riesz decomposition theorem; order asymptotic martingales; Banach lattice valued random variables; amarts; boundedness conditions},
language = {eng},
pages = {233-257},
publisher = {Société mathématique de France},
title = {Riesz spaces valued measures and processes},
url = {http://eudml.org/doc/87431},
volume = {110},
year = {1982},
}

TY - JOUR
AU - Ghoussoub, Nassif
TI - Riesz spaces valued measures and processes
JO - Bulletin de la Société Mathématique de France
PY - 1982
PB - Société mathématique de France
VL - 110
SP - 233
EP - 257
LA - eng
KW - Riesz spaces valued measures and processes; Riesz decomposition theorem; order asymptotic martingales; Banach lattice valued random variables; amarts; boundedness conditions
UR - http://eudml.org/doc/87431
ER -

References

top
  1. [1] ASTBURY (K.). — Amarts indexed by directed sets, Ann. Prob., 1977 (to appear). Zbl0378.60017
  2. [2] BELLOW (A.). — On vector valued asymptotic martingales, Proc. Nat. Acad. Sc. U.S.A., Vol. 73, No. 6, 1976, pp. 1978-1979. Zbl0366.60067MR53 #11733
  3. [3] BELLOW (A.). — Les amarts uniformes, C. R. Acad. Sc. Paris., T. 284, Serie A, 1977, pp. 1295-1298. Zbl0359.60047MR56 #3938
  4. [4] BENJAMINI (Y.) and GHOUSSOUB (N.). — Une caractérisation probabiliste de l1. C. R. Acad. Sc. Paris, T. 286, Serie A, 1978, pp. 795-797. Zbl0379.60050
  5. [5] BRU and HEINRICH (H.). — Convergence forte de certains amarts vectoriels-O-amarts et hypomartingales (1978) (to appear). 
  6. [6] BRUNEL (A.) and SUCHESTON (L.). — Sur les amarts faibles à valeurs vectorielles. C. R. Acad. Sc. Paris, T. 282, Serie A, 1976, pp. 1011-1014. Zbl0359.60046MR54 #3840
  7. [7] BRUNEL (A.) and SUCHESTON (L.). — Sur les amarts à valeurs vectorielles. C. R. Acad. Sc. Paris, T. 283, Serie A, 1976, pp. 1037-1039. Zbl0373.60056MR55 #11378
  8. [8] BRUNEL (A.) and SUCHESTON (L.). — Une caractérisation probabiliste de la séparabilité du dual. C. R. Acad. Sc. Paris, T. 284, Serie A, 1977, pp. 1469-1472. Zbl0382.60053MR55 #13566
  9. [9] CHACON (R. V.). — A stopped proof of convergence. Advances in Math., Vol. 14, 1974, pp. 365-368. Zbl0308.60018MR51 #1940
  10. [10] CHACON (R. V.) and SUCHESTON (L.). — On convergence of vector-valued asymptotic martingales. Z. Wahrs. verw. Ceb., Vol. 33, 1975, pp. 55-59. Zbl0297.60005MR52 #15658
  11. [11] CHATTERJI (D.). — Martingale convergence and the Radon-Nikodym theorem. Math. Scand., Vol. 22, 1968, pp. 21-41. Zbl0175.14503
  12. [12] DIESTEL (J.) and Jr. UHL (J.). — Vectors measures, A.M.S. survey, 1977. 
  13. [13] EDGAR (G. A.) and SUCHESTON (L.). — The Riesz decomposition for vector-valued amarts. Zeit. Wahrs. Ceb., Vol. 36, 1976, pp. 85-92. Zbl0319.60025MR54 #1369
  14. [14] EDGAR (G. A.) and SUCHESTON (L.). — Amarts : a class of asymptotic martingales. J. Mult. Analysis., Vol. 6, 1976, pp. 193-221. Zbl0336.60033MR54 #1368
  15. [15] GHOUSSOUB (N.). — Banach lattices valued amarts. A.I.H.P., Vol. XIII, No. 2, 1977, pp. 159-169. Zbl0384.60035MR57 #10809
  16. [16] GHOUSSOUB (N.). — Summability and vector amarts, Vol. 9, N° 1, 1979, pp. 173-178. Zbl0407.60043MR80i:60076
  17. [17] GHOUSSOUB (N.). — Order amarts : a class of asymptotic martingales. J. Mult. Analysis, Vol. 9, No. 1, 1979, pp. 165-172. Zbl0407.60042MR80i:60075
  18. [18] GHOUSSOUB (N.) and SUCHESTON (L.). — A refinement of the Riesz decomposition of amarts and semi-amarts. J. Mult. Anal. Vol. 18, No. 1, pp. 146-150. Zbl0374.60059MR58 #13334
  19. [19] GHOUSSOUB (N.) and TALAGRAND (M.). — A generalised Chacon's inequality and order convergence of processes, Seminaire Choquet, 17e année, 1977-1978. Zbl0391.60011
  20. [20] GHOUSSOUB (N.) and TALAGRAND (M.). — Convergence faible des potentiels de Doob vectoriels. C. R. Acad. Sc. Paris, T. 288, Série A, 1979, pp. 599-602. Zbl0397.60016MR80b:60100
  21. [21] HEINICH (H.). — Thèse de Doctorat, 1975. 
  22. [22] HEINICH (H.). — Martingales asymptotiques pour l'ordre, 1978, (to appear). Zbl0391.60049MR80c:60067
  23. [23] HEINICH (H.). — Convergence des sous-martingales positives dans un Banach réticule. C. R. Acad. Sc. Paris, T. 286, Série A, 1978, pp. 279-280. Zbl0383.60046MR81e:60051
  24. [24] LINDENSTRAUSS (J.) and TZAFRITI (L.). — Classical Banach spaces-Function spaces, Vol. II, Springer-Verlag, 1978 (to appear). 
  25. [25] PERISSINI (A.). — Ordered topological vector spaces, Harper's series in modern mathematics, New York, Evanston and London, 1967. Zbl0169.14801
  26. [26] PERISSINI (A.). — Banach limits in vector lattices, Studia Mathematica, Vol. TXXXV, 1970. Zbl0206.11902
  27. [27] SHAEFFER (H. H.). — Banach lattices and positive operators, Springer-Verlag, 1974. Zbl0296.47023
  28. [28] WOYCINSKI (W. A.). — Geometry and Martingales in Banach spaces, Winter school of probability, Karpacz, Springer-Verlag, 1975. Zbl0353.60044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.