Solutions périodiques des systèmes non conservatifs périodiquement perturbés
Bulletin de la Société Mathématique de France (1985)
- Volume: 113, page 387-402
- ISSN: 0037-9484
Access Full Article
topHow to cite
topNkashama, M.N.. "Solutions périodiques des systèmes non conservatifs périodiquement perturbés." Bulletin de la Société Mathématique de France 113 (1985): 387-402. <http://eudml.org/doc/87494>.
@article{Nkashama1985,
author = {Nkashama, M.N.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Fourier series method; Leray-Schauder's techniques; coincidence degree},
language = {fre},
pages = {387-402},
publisher = {Société mathématique de France},
title = {Solutions périodiques des systèmes non conservatifs périodiquement perturbés},
url = {http://eudml.org/doc/87494},
volume = {113},
year = {1985},
}
TY - JOUR
AU - Nkashama, M.N.
TI - Solutions périodiques des systèmes non conservatifs périodiquement perturbés
JO - Bulletin de la Société Mathématique de France
PY - 1985
PB - Société mathématique de France
VL - 113
SP - 387
EP - 402
LA - fre
KW - Fourier series method; Leray-Schauder's techniques; coincidence degree
UR - http://eudml.org/doc/87494
ER -
References
top- [1] AHMAD (S.). — An existence theorem for periodically perturbed conservative systems, Michigan Math. J., vol. 20, 1973, p. 385-392. Zbl0294.34029MR49 #10971
- [2] AMANN (H.). — On the unique solvability of semi-linear operator equations in Hilbert spaces, J. Math. pures et appl., vol. 61, 1982, p. 149-175. Zbl0501.47024MR83k:47049
- [3] AMARAL (L.) and PERA (M. P.). — On periodic solutions of non-conservative systems, Nonlinear Analysis, Theory, Methods and Appl., vol. 6, 1982, p. 733-743. Zbl0532.47052MR84k:58063
- [4] BATES (P. W.). — Solutions of nonlinear elliptic systems with meshed spectra, Nonlinear Analysis, Theory, Methods and Appl., vol. 4, 1980, p. 1023-1030. Zbl0456.35050MR82a:47056
- [5] BROWN (K. J.) and LIN (S. S.). — Periodically perturbed conservative systems and a global inverse function theorem, Nonlinear Analysis, Theory, Methods and Appl., vol. 4, 1980, p. 193-201. Zbl0428.34015MR81b:34030
- [6] CHOW (S. N.) and LASOTA (A.). — On boundary value problems for ordinary differential equations, J. Diff. Eq., vol. 14, 1973, p. 326-337. Zbl0285.34009MR48 #8935
- [7] CHOW (S. N.), HALE (J. K.) and MALLET-PARET (J.). — Applications of generic bifurcation I, Arch. Rat. Mech. An., vol. 59, 1975, p. 159-188. Zbl0328.47036MR52 #11675
- [8] DUNFORD (N.) and SCHWARTZ (J. T.), Linear Operators, vol. 1, Inter-science Publishers, Wiley, New York, 1964. Zbl0084.10402
- [9] IANNACCI (R.) and NKASHAMA (M. N.). — Periodic solutions for some forced second order Lienard and Duffing systems, Bol. Un. Mat. Italiana, vol. 4-B, 1985, p. 557-568. Zbl0627.34043MR87a:34040
- [10] KANNAN (R.), Periodically perturbed conservative systems, J. Differential Equations, vol. 16, 1974, p. 506-514. Zbl0349.34029MR54 #5543
- [11] KANNAN (R.) and LOCKER (J.), On a class of nonlinear boundary value problems, J. Differential Eq., vol. 26, 1977, p. 1-8. Zbl0326.34024MR58 #1349
- [12] LANG (S.), Analyse réelle, Inter-Éditions, Paris, 1977.
- [13] LAZER (A. C.), Application of a lemma on bilinear forms to a problem in nonlinear oscillations, Proc. Amer. Math. Soc., vol. 33, 1972, p. 89-94. Zbl0257.34041MR45 #2258
- [14] LAZER (A. C.) and SANCHEZ (D. A.). — On periodically perturbed conservative systems, Michigan Math. J., vol. 16, 1969, p. 193-200. Zbl0187.34501MR39 #7212
- [15] MAWHIN (J.), Contractive mappings and periodically perturbed conservative systems, Arch. Math. (Brno), vol. 12, 1976, p. 67-73. Zbl0353.47034MR55 #10779
- [16] MAWHIN (J.), Topological degree methods in nonlinear boundary value problems, Regional Conf. Series in Math. n° 40, Amer. Math. Soc., Providence R.I., 1979, Second printing, 1981. Zbl0414.34025MR80c:47055
- [17] MAWHIN (J.). — Compacité, monotonie et convexité dans l'étude de problèmes aux limites semi-linéaires, Sem. Anal. Moderne, n° 19, Université de Sherbrooke, Québec, 1981. Zbl0497.47033
- [18] REID (W. T.), Some elementary properties of proper values and proper vectors of matrix functions, S.I.A.M. J. Appl. Math., (2), vol. 18, 1970, p. 259-266. Zbl0192.37201MR41 #8623
- [19] REISSIG (R.). — Contractive mappings and periodically perturbed non-conservative systems, Lincei-Rend. Sc. fis. mat. e nat., vol. 58, 1975, p. 696-702. Zbl0344.34033MR55 #3428
- [20] WARD (J. R.). — Periodic solutions of perturbed conservative systems, Proc. Amer. Math. Soc., vol. 72, 1978, p. 281-285. Zbl0418.34045MR80b:34045
- [21] WARD (J. R.), The existence of periodic solutions for nonlinearly perturbed conservative systems, Nonlinear Analysis, Theory, Methods and Appl., vol. 5, 1979, p. 697-705. Zbl0434.34031MR80h:34053
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.