Solutions périodiques des systèmes non conservatifs périodiquement perturbés

M.N. Nkashama

Bulletin de la Société Mathématique de France (1985)

  • Volume: 113, page 387-402
  • ISSN: 0037-9484

How to cite

top

Nkashama, M.N.. "Solutions périodiques des systèmes non conservatifs périodiquement perturbés." Bulletin de la Société Mathématique de France 113 (1985): 387-402. <http://eudml.org/doc/87494>.

@article{Nkashama1985,
author = {Nkashama, M.N.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Fourier series method; Leray-Schauder's techniques; coincidence degree},
language = {fre},
pages = {387-402},
publisher = {Société mathématique de France},
title = {Solutions périodiques des systèmes non conservatifs périodiquement perturbés},
url = {http://eudml.org/doc/87494},
volume = {113},
year = {1985},
}

TY - JOUR
AU - Nkashama, M.N.
TI - Solutions périodiques des systèmes non conservatifs périodiquement perturbés
JO - Bulletin de la Société Mathématique de France
PY - 1985
PB - Société mathématique de France
VL - 113
SP - 387
EP - 402
LA - fre
KW - Fourier series method; Leray-Schauder's techniques; coincidence degree
UR - http://eudml.org/doc/87494
ER -

References

top
  1. [1] AHMAD (S.). — An existence theorem for periodically perturbed conservative systems, Michigan Math. J., vol. 20, 1973, p. 385-392. Zbl0294.34029MR49 #10971
  2. [2] AMANN (H.). — On the unique solvability of semi-linear operator equations in Hilbert spaces, J. Math. pures et appl., vol. 61, 1982, p. 149-175. Zbl0501.47024MR83k:47049
  3. [3] AMARAL (L.) and PERA (M. P.). — On periodic solutions of non-conservative systems, Nonlinear Analysis, Theory, Methods and Appl., vol. 6, 1982, p. 733-743. Zbl0532.47052MR84k:58063
  4. [4] BATES (P. W.). — Solutions of nonlinear elliptic systems with meshed spectra, Nonlinear Analysis, Theory, Methods and Appl., vol. 4, 1980, p. 1023-1030. Zbl0456.35050MR82a:47056
  5. [5] BROWN (K. J.) and LIN (S. S.). — Periodically perturbed conservative systems and a global inverse function theorem, Nonlinear Analysis, Theory, Methods and Appl., vol. 4, 1980, p. 193-201. Zbl0428.34015MR81b:34030
  6. [6] CHOW (S. N.) and LASOTA (A.). — On boundary value problems for ordinary differential equations, J. Diff. Eq., vol. 14, 1973, p. 326-337. Zbl0285.34009MR48 #8935
  7. [7] CHOW (S. N.), HALE (J. K.) and MALLET-PARET (J.). — Applications of generic bifurcation I, Arch. Rat. Mech. An., vol. 59, 1975, p. 159-188. Zbl0328.47036MR52 #11675
  8. [8] DUNFORD (N.) and SCHWARTZ (J. T.), Linear Operators, vol. 1, Inter-science Publishers, Wiley, New York, 1964. Zbl0084.10402
  9. [9] IANNACCI (R.) and NKASHAMA (M. N.). — Periodic solutions for some forced second order Lienard and Duffing systems, Bol. Un. Mat. Italiana, vol. 4-B, 1985, p. 557-568. Zbl0627.34043MR87a:34040
  10. [10] KANNAN (R.), Periodically perturbed conservative systems, J. Differential Equations, vol. 16, 1974, p. 506-514. Zbl0349.34029MR54 #5543
  11. [11] KANNAN (R.) and LOCKER (J.), On a class of nonlinear boundary value problems, J. Differential Eq., vol. 26, 1977, p. 1-8. Zbl0326.34024MR58 #1349
  12. [12] LANG (S.), Analyse réelle, Inter-Éditions, Paris, 1977. 
  13. [13] LAZER (A. C.), Application of a lemma on bilinear forms to a problem in nonlinear oscillations, Proc. Amer. Math. Soc., vol. 33, 1972, p. 89-94. Zbl0257.34041MR45 #2258
  14. [14] LAZER (A. C.) and SANCHEZ (D. A.). — On periodically perturbed conservative systems, Michigan Math. J., vol. 16, 1969, p. 193-200. Zbl0187.34501MR39 #7212
  15. [15] MAWHIN (J.), Contractive mappings and periodically perturbed conservative systems, Arch. Math. (Brno), vol. 12, 1976, p. 67-73. Zbl0353.47034MR55 #10779
  16. [16] MAWHIN (J.), Topological degree methods in nonlinear boundary value problems, Regional Conf. Series in Math. n° 40, Amer. Math. Soc., Providence R.I., 1979, Second printing, 1981. Zbl0414.34025MR80c:47055
  17. [17] MAWHIN (J.). — Compacité, monotonie et convexité dans l'étude de problèmes aux limites semi-linéaires, Sem. Anal. Moderne, n° 19, Université de Sherbrooke, Québec, 1981. Zbl0497.47033
  18. [18] REID (W. T.), Some elementary properties of proper values and proper vectors of matrix functions, S.I.A.M. J. Appl. Math., (2), vol. 18, 1970, p. 259-266. Zbl0192.37201MR41 #8623
  19. [19] REISSIG (R.). — Contractive mappings and periodically perturbed non-conservative systems, Lincei-Rend. Sc. fis. mat. e nat., vol. 58, 1975, p. 696-702. Zbl0344.34033MR55 #3428
  20. [20] WARD (J. R.). — Periodic solutions of perturbed conservative systems, Proc. Amer. Math. Soc., vol. 72, 1978, p. 281-285. Zbl0418.34045MR80b:34045
  21. [21] WARD (J. R.), The existence of periodic solutions for nonlinearly perturbed conservative systems, Nonlinear Analysis, Theory, Methods and Appl., vol. 5, 1979, p. 697-705. Zbl0434.34031MR80h:34053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.