À propos de la forme hermitienne canonique d'une singularité isolée d'hypersurface

François Loeser

Bulletin de la Société Mathématique de France (1986)

  • Volume: 114, page 385-392
  • ISSN: 0037-9484

How to cite

top

Loeser, François. "À propos de la forme hermitienne canonique d'une singularité isolée d'hypersurface." Bulletin de la Société Mathématique de France 114 (1986): 385-392. <http://eudml.org/doc/87516>.

@article{Loeser1986,
author = {Loeser, François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {isolated hypersurface singularity; Milnor fiber; monodromy; intersection form},
language = {fre},
pages = {385-392},
publisher = {Société mathématique de France},
title = {À propos de la forme hermitienne canonique d'une singularité isolée d'hypersurface},
url = {http://eudml.org/doc/87516},
volume = {114},
year = {1986},
}

TY - JOUR
AU - Loeser, François
TI - À propos de la forme hermitienne canonique d'une singularité isolée d'hypersurface
JO - Bulletin de la Société Mathématique de France
PY - 1986
PB - Société mathématique de France
VL - 114
SP - 385
EP - 392
LA - fre
KW - isolated hypersurface singularity; Milnor fiber; monodromy; intersection form
UR - http://eudml.org/doc/87516
ER -

References

top
  1. [1] BARLET (D.). — Développement asymptotique des fonctions obtenues par intégration dans les fibres. Inventiones Math., vol. 68, 1982, p. 129-174. Zbl0508.32003MR84a:32021
  2. [2] BARLET (D.). — Forme hermitienne canonique sur la cohomologie de la fibre de Milnor d'une hypersurface à singularité isolée. Inventiones Math., vol. 81, 1985, p. 115-153. Zbl0574.32011MR87f:32020
  3. [3] LOESER (F.). — Quelques conséquences locales de la théorie de Hodge. Annales de l'Institut Fourier, vol. XXXV, n° 1, 1985, p. 75-92. Zbl0862.32020MR86g:32007
  4. [4] SCHERK (J.). — On the monodromy theorem for isolated hypersurface singularities. Inventiones Math., vol. 58, 1980, p. 289-301. Zbl0432.32010MR81k:14009
  5. [5] SCHMID (W.). — Variation of Hodge structures ; the singularities of the period mapping. Inventiones Math., vol. 22, 1973, p. 211-319. Zbl0278.14003MR52 #3157
  6. [6] STEENBRINK (J.). — Mixed Hodge structure on the Vanishing cohomology. Real and Complex singularities, Oslo, 1976, p. 525-563. Zbl0373.14007MR58 #5670
  7. [7] VARCHENKO (A.). — Asymptotics of holomorphic forms define mixed Hodge structure, Dolk. Akad. Nauk., vol. 255, n° 5, 1980, p. 1035-1038. Zbl0516.14007MR82g:14010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.