Sur quelques théorèmes de convergence du processus de naissance avec interaction des voisins

Zhi-Ying Wen

Bulletin de la Société Mathématique de France (1986)

  • Volume: 114, page 403-429
  • ISSN: 0037-9484

How to cite

top

Wen, Zhi-Ying. "Sur quelques théorèmes de convergence du processus de naissance avec interaction des voisins." Bulletin de la Société Mathématique de France 114 (1986): 403-429. <http://eudml.org/doc/87519>.

@article{Wen1986,
author = {Wen, Zhi-Ying},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Galton-Watson process; m-dependent random variables; central limit theorem; law of the iterated logarithm},
language = {fre},
pages = {403-429},
publisher = {Société mathématique de France},
title = {Sur quelques théorèmes de convergence du processus de naissance avec interaction des voisins},
url = {http://eudml.org/doc/87519},
volume = {114},
year = {1986},
}

TY - JOUR
AU - Wen, Zhi-Ying
TI - Sur quelques théorèmes de convergence du processus de naissance avec interaction des voisins
JO - Bulletin de la Société Mathématique de France
PY - 1986
PB - Société mathématique de France
VL - 114
SP - 403
EP - 429
LA - fre
KW - Galton-Watson process; m-dependent random variables; central limit theorem; law of the iterated logarithm
UR - http://eudml.org/doc/87519
ER -

References

top
  1. [1] ASMUSEEN (S.). — Some martingale methods in the limit theory of supercritical branching processes, Advance in Probability and Related Topics, vol. 5, 1976, p. 1-26. Zbl0402.60083MR80d:60103
  2. [2] ASMUSEEN (S.). — Almost sure behavior of linear functions of supercritical branching processes, Trans. Americqn Math., vol. 1, 1977, p. 233-248. Zbl0376.60083
  3. [3] ATHREYA (K. B.) and NEY (P. E.). — Branching processes, Springer, New York, 1972. Zbl0259.60002MR51 #9242
  4. [4] BILLINGSLEY. — Probability and mesure, J. Wiley and Sons, 1965. 
  5. [5] HARRIS (T. E.). — The theory of branching processes, Berlin, Springer, 1963. Zbl0117.13002MR29 #664
  6. [6] HEYDE (C. C.) and BROWN (B. M.). — An invariance principle and some convergence rate results for branching processes, Z.W. 1971, p. 270-278. Zbl0212.49505MR46 #10085
  7. [7] HEYDE (C. C.). — Some central limit analogues for supercritical Galton-Watson processes, J. appl. Prob., vol. 8, 1971, p. 52-59. Zbl0222.60054MR43 #8133
  8. [8] HEYDE (C. C.). — Some almost sure convergence theorem for branching processes, Z.W., vol. 20, 1971, p. 189-192. Zbl0212.19703MR47 #5973
  9. [9] NEVEU (J.). — Bases mathématiques du calcul des probabilités, Masson, Paris, 1970. Zbl0203.49901MR42 #6885
  10. [10] PEYRIÈRE (J.). — Mandelbrot random beadsets and birth processes with interaction, I.B.M. Research report, RC-7417. 
  11. [11] PEYRIÈRE (J.). — Processus de naissance avec interaction des voisins, C.R. Acad. Sc., Paris, t. 289, 1979, p. 223-224 et 557. Zbl0414.60070MR80i:60120
  12. [12] PEYRIÈRE (J.). — Processus de naissance avec interactions voisins, évolution de graphes, Ann. Inst. Fourier, vol. 31, 1981. Zbl0452.60089MR84d:60126
  13. [13] SHERGIN (V. V.). — On the convergence rate in the central limit theorem for m-dependent random variables, Theory Prob. Appl., vol. 24, 1979, p. 782-796. Zbl0447.60023MR81e:60024
  14. [14] DOOB (J. L.). — Stochastic processes, J. L. Doob, Wiley, New York, 1953. Zbl0053.26802MR15,445b

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.