Faisceaux triangulaires sur l'espace projectif

M. Baptista de Campos

Bulletin de la Société Mathématique de France (1988)

  • Volume: 116, Issue: 3, page 279-293
  • ISSN: 0037-9484

How to cite

top

Baptista de Campos, M.. "Faisceaux triangulaires sur l'espace projectif." Bulletin de la Société Mathématique de France 116.3 (1988): 279-293. <http://eudml.org/doc/87556>.

@article{BaptistadeCampos1988,
author = {Baptista de Campos, M.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {G-equivariant sheaf; Maruyama moduli; linearized sheaf},
language = {fre},
number = {3},
pages = {279-293},
publisher = {Société mathématique de France},
title = {Faisceaux triangulaires sur l'espace projectif},
url = {http://eudml.org/doc/87556},
volume = {116},
year = {1988},
}

TY - JOUR
AU - Baptista de Campos, M.
TI - Faisceaux triangulaires sur l'espace projectif
JO - Bulletin de la Société Mathématique de France
PY - 1988
PB - Société mathématique de France
VL - 116
IS - 3
SP - 279
EP - 293
LA - fre
KW - G-equivariant sheaf; Maruyama moduli; linearized sheaf
UR - http://eudml.org/doc/87556
ER -

References

top
  1. [1] ALTMAN (A.) and KLEIMAN (S.). — Introduction to Grothendieck Duality Theory, Lecture Notes in Mathematics, 146, Springer. Zbl0215.37201MR43 #224
  2. [2] BERTIN (S.) et ELENCWAJG (G.). — Symétries des Fibrés vectoriels sur ℙn et nombre d'Euler, Duke Math. J., t. 49, 1982, p. 805-831. Zbl0512.14007
  3. [3] BOREL (A.). — Linear Algebraic Groups, Notes by H. Bass. - New York, W.A. Benjamin, 1969. Zbl0186.33201MR40 #4273
  4. [4] BOURBAKI (N.). — Éléments de Mathématique. 
  5. [5] BRIANÇON (J.) and IARROBINO (A.). — Dimension of the Punctual Hilbert Scheme, J. Algebra, t. 55, 1978, p. 536-544. Zbl0402.14003MR80g:14013
  6. [6] DEMAZURE (M.) and GABRIEL (P.). — Introduction to Algebraic Geometry and Algebraic Groups, North Holland Math. Studies, 39, 1980, ou Groupes Algébriques, tome 1, Paris, Masson et Cie, 1970. Zbl0431.14015MR82e:14001
  7. [7] GROTHENDIECK (A.). — E.G.A., Publ. Math. (IHES), n° 4, 8, 11, 20, 24, 28, 32. 
  8. [7′] GROTHENDIECK (A.). — Technique de Construction et Théorème d'Existence en Géométrie Algébrique-IV, Les schémas de Hilbert, Séminaire Bourbaki, n° 221, t. 13, 1960-1961. Zbl0236.14003
  9. [8] HARTSHORNE (R.). — Algebraic Geometry. - G.T.M., Springer, n° 52. Zbl0367.14001MR57 #3116
  10. [9] KANEYAMA (T.). — On equivariant vector bundles on an almost homogeneous variety, Nagoya Math. J., t. 57, 1975, p. 65-86. Zbl0283.14008MR51 #12855
  11. [10] MARUYAMA (M.). — Moduli of stable sheaves, I, J. Math. Kyoto Univ., t. 17-1, 1977, p. 91-126. Zbl0374.14002MR56 #8567
  12. [10′] MARUYAMA (M.). — Moduli of stable sheaves, II, J. Math. Kyoto Univ., t. 18-3, 1978, p. 557-614. Zbl0395.14006MR82h:14011
  13. [10″] MARUYAMA (M.). — Openness of a family of torsion free sheaves, J. Math. Kyoto Univ., t. 16-3, 1976, p. 627-637. Zbl0404.14004MR55 #2908
  14. [10‴] MARUYAMA (M.). — Moduli of stable sheaves, Generalities and the curve of jumping lines of vector bundles on ℙ2. Advanced Studies in Pure Math. I, Alg. Var. and Analy. Var. Kinokuniya, Tokyo, 1983. Zbl0527.14018MR85b:14021
  15. [11] MILNE (J.S.). — Etale Cohomology. - Princeton Math. Series 33, 1980. Zbl0433.14012MR81j:14002
  16. [12] MUMFORD (D.) and FOGARTY (J.). — Geometric Invariant Theory. - Berlin, Springer-Verlag (Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, band 34), 1982. Zbl0504.14008MR86a:14006
  17. [13] FORSTER. — Les fibrés vectoriels et Équations différentielles, [Colloque International, Nice], Birkhäuser, 1979. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.