Rings of differential operators over rational affine curves

Gail Letzter; Leonid Makar-Limanov

Bulletin de la Société Mathématique de France (1990)

  • Volume: 118, Issue: 2, page 193-209
  • ISSN: 0037-9484

How to cite

top

Letzter, Gail, and Makar-Limanov, Leonid. "Rings of differential operators over rational affine curves." Bulletin de la Société Mathématique de France 118.2 (1990): 193-209. <http://eudml.org/doc/87601>.

@article{Letzter1990,
author = {Letzter, Gail, Makar-Limanov, Leonid},
journal = {Bulletin de la Société Mathématique de France},
keywords = {irreducible complex algebraic curve; normalization map; rings of differential operators; monomial curves},
language = {eng},
number = {2},
pages = {193-209},
publisher = {Société mathématique de France},
title = {Rings of differential operators over rational affine curves},
url = {http://eudml.org/doc/87601},
volume = {118},
year = {1990},
}

TY - JOUR
AU - Letzter, Gail
AU - Makar-Limanov, Leonid
TI - Rings of differential operators over rational affine curves
JO - Bulletin de la Société Mathématique de France
PY - 1990
PB - Société mathématique de France
VL - 118
IS - 2
SP - 193
EP - 209
LA - eng
KW - irreducible complex algebraic curve; normalization map; rings of differential operators; monomial curves
UR - http://eudml.org/doc/87601
ER -

References

top
  1. [1] AMITSUR (S.A.). — Commutative Linear Differential Operators, Pacific Journal of Mathematics, t. 8, 1958, p. 1-10. Zbl0218.12054MR20 #1808
  2. [2] DIXMIER (J.). — Sur les algèbres de Weyl, Bull. Soc. Math. France, t. 96, 1968, p. 209-242. Zbl0165.04901MR39 #4224
  3. [3] GOODEARL (K.). — Centralizers in Differential, Pseudodifferential, and Franctional Differential Operator Rings, Rocky Mountain Journal of Mathematics, t. 13, 1983, p. 573-618. Zbl0532.16002MR85b:13039
  4. [4] LETZTER (G.). — Non Isomorphic Curves with Isomorphic Rings of Differential Operators, preprint. Zbl0805.16025
  5. [5] MAKAR-LIMANOV (L.). — Rings of Differential Operators on Algebraic Curves, J. of the London Mathematical Society, t. 21, 1989, p. 538-540. Zbl0693.16003MR90j:16004
  6. [6] MATSAMURA (H.). — Commutative Algebra. - W.A. Benjamin Co, New York, 1970. Zbl0211.06501
  7. [7] MUSSON (I. M.). — Some Rings of Differential Operators which are Morita Equivalent to the Weyl Algebra A1, Proc. Amer. Math. Soc., t. 98, 1986, p. 29-30. Zbl0599.16001MR88a:16012
  8. [8] PERKINS (P.). — Commutative Subalgebras of the Ring of Differential Operators on a Curve, Pacific J. Math., t. 139, 1989, p. 279-302. Zbl0692.13019MR90j:14035
  9. [9] SMITH (S.P.) and STAFFORD (J.T.). — Differential Operators on an Affine Curve, Proc. London Math. Soc., t. 56, 1988, p. 229-259. Zbl0672.14017MR89d:14039
  10. [10] STAFFORD (J.T.). — Endomorphisms of Right Ideals of the Weyl Algebra, Transactions of the AMS, t. 299, 1987, p. 623-639. Zbl0615.16022MR88d:16025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.