Rings of differential operators over rational affine curves
Gail Letzter; Leonid Makar-Limanov
Bulletin de la Société Mathématique de France (1990)
- Volume: 118, Issue: 2, page 193-209
- ISSN: 0037-9484
Access Full Article
topHow to cite
topLetzter, Gail, and Makar-Limanov, Leonid. "Rings of differential operators over rational affine curves." Bulletin de la Société Mathématique de France 118.2 (1990): 193-209. <http://eudml.org/doc/87601>.
@article{Letzter1990,
author = {Letzter, Gail, Makar-Limanov, Leonid},
journal = {Bulletin de la Société Mathématique de France},
keywords = {irreducible complex algebraic curve; normalization map; rings of differential operators; monomial curves},
language = {eng},
number = {2},
pages = {193-209},
publisher = {Société mathématique de France},
title = {Rings of differential operators over rational affine curves},
url = {http://eudml.org/doc/87601},
volume = {118},
year = {1990},
}
TY - JOUR
AU - Letzter, Gail
AU - Makar-Limanov, Leonid
TI - Rings of differential operators over rational affine curves
JO - Bulletin de la Société Mathématique de France
PY - 1990
PB - Société mathématique de France
VL - 118
IS - 2
SP - 193
EP - 209
LA - eng
KW - irreducible complex algebraic curve; normalization map; rings of differential operators; monomial curves
UR - http://eudml.org/doc/87601
ER -
References
top- [1] AMITSUR (S.A.). — Commutative Linear Differential Operators, Pacific Journal of Mathematics, t. 8, 1958, p. 1-10. Zbl0218.12054MR20 #1808
- [2] DIXMIER (J.). — Sur les algèbres de Weyl, Bull. Soc. Math. France, t. 96, 1968, p. 209-242. Zbl0165.04901MR39 #4224
- [3] GOODEARL (K.). — Centralizers in Differential, Pseudodifferential, and Franctional Differential Operator Rings, Rocky Mountain Journal of Mathematics, t. 13, 1983, p. 573-618. Zbl0532.16002MR85b:13039
- [4] LETZTER (G.). — Non Isomorphic Curves with Isomorphic Rings of Differential Operators, preprint. Zbl0805.16025
- [5] MAKAR-LIMANOV (L.). — Rings of Differential Operators on Algebraic Curves, J. of the London Mathematical Society, t. 21, 1989, p. 538-540. Zbl0693.16003MR90j:16004
- [6] MATSAMURA (H.). — Commutative Algebra. - W.A. Benjamin Co, New York, 1970. Zbl0211.06501
- [7] MUSSON (I. M.). — Some Rings of Differential Operators which are Morita Equivalent to the Weyl Algebra A1, Proc. Amer. Math. Soc., t. 98, 1986, p. 29-30. Zbl0599.16001MR88a:16012
- [8] PERKINS (P.). — Commutative Subalgebras of the Ring of Differential Operators on a Curve, Pacific J. Math., t. 139, 1989, p. 279-302. Zbl0692.13019MR90j:14035
- [9] SMITH (S.P.) and STAFFORD (J.T.). — Differential Operators on an Affine Curve, Proc. London Math. Soc., t. 56, 1988, p. 229-259. Zbl0672.14017MR89d:14039
- [10] STAFFORD (J.T.). — Endomorphisms of Right Ideals of the Weyl Algebra, Transactions of the AMS, t. 299, 1987, p. 623-639. Zbl0615.16022MR88d:16025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.