Some exceptional compact matrix pseudogroups

Nicolás Andruskiewitsch

Bulletin de la Société Mathématique de France (1992)

  • Volume: 120, Issue: 3, page 297-325
  • ISSN: 0037-9484

How to cite

top

Andruskiewitsch, Nicolás. "Some exceptional compact matrix pseudogroups." Bulletin de la Société Mathématique de France 120.3 (1992): 297-325. <http://eudml.org/doc/87646>.

@article{Andruskiewitsch1992,
author = {Andruskiewitsch, Nicolás},
journal = {Bulletin de la Société Mathématique de France},
keywords = {exceptional Lie algebras; quantized enveloping algebras; compact matrix pseudogroups; real forms; -Hopf algebras},
language = {eng},
number = {3},
pages = {297-325},
publisher = {Société mathématique de France},
title = {Some exceptional compact matrix pseudogroups},
url = {http://eudml.org/doc/87646},
volume = {120},
year = {1992},
}

TY - JOUR
AU - Andruskiewitsch, Nicolás
TI - Some exceptional compact matrix pseudogroups
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 3
SP - 297
EP - 325
LA - eng
KW - exceptional Lie algebras; quantized enveloping algebras; compact matrix pseudogroups; real forms; -Hopf algebras
UR - http://eudml.org/doc/87646
ER -

References

top
  1. [A] ANDRUSKIEWITSCH (N.). — Some forms of Kac Moody algebras, J. Algebra, (to appear). Zbl0763.17022
  2. [AE] ANDRUSKIEWITSCH (N.) and ENRIQUEZ (B.). — Examples of Compact Matrix Pseudogroups arising from the twisting operation, Preprint. Zbl0756.17006
  3. [APW] ANDERSON (H.H.), POLO (P.) and WEN (K.). — Representations of quantum algebras, Invent. Math., t. 104, 1991, p. 1-60. Zbl0724.17012MR92e:17011
  4. [B] BOURBAKI (N.). — Groupes et algèbres de Lie, Chap. 4, 5 et 6. - Hermann, Paris, 1968. 
  5. [D1] DRINFELD (V.G.). — Hopf algebras and the Yang-Baxter equation, Soviet Math. Dokl., t. 32, 1985, p. 254-258. Zbl0588.17015MR87h:58080
  6. [D2] DRINFELD (V.G.). — Quantum groups, Proc. of the ICM, Berkeley, 1986, pp. 798-820. Zbl0667.16003MR89f:17017
  7. [FRT] FADEEV (L.D.), RESHETIKHIN (N. Yu) and TAKHTAJAN (L.A.). — Quantization of Lie Groups and Lie algebras, in Algebraic Analysis, Papers dedicated to Professor Mikio Saito on the Occasion of His Sixtieth Birthday, Academic Press, 1988, pp. 129-139. Zbl0677.17010MR91d:17017
  8. [J] JIMBO (M.). — A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys., t. 10, 1985, p. 63-69. Zbl0587.17004MR86k:17008
  9. [L1] LUSZTIG (G.). — Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math., t. 70, 1988, p. 237-249. Zbl0651.17007MR89k:17029
  10. [L2] LUSZTIG (G.). — Modular representations and quantum groups, Contemp. Math., t. 82, 1989, p. 59-77. Zbl0665.20022MR90a:16008
  11. [L3] LUSZTIG (G.). — Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. of Amer. Math. Soc., t. 3 (1), p. 257-296. Zbl0695.16006MR91e:17009
  12. [L4] LUSZTIG (G.). — Quantum groups at roots of 1, Geom. Dedicata, 1990. Zbl0714.17013
  13. [K] KAC (V.). — Infinite dimensional Lie algebras, Prog. in Math., vol. 44, Birkhauser, Boston, 1983. Zbl0537.17001MR86h:17015
  14. [Ko] KOSTANT (B.). — Groups over Z, Proc. Symp. Pur Math., Amer. Math. Soc., t. 6, 1966, p. 90-98. Zbl0199.06903MR34 #7528
  15. [KR] KULISH (P.P.) and RESHETIKHIN (N. Yu). — The quantum linear problem for the sine Gordon equation and higher representations, J. Soviet Math., t. 23 (4), 1983, p. 2435-2440. 
  16. [Ma] MANIN (Yu.). — Quantum Groups. — Montreal Lectures, 1988. 
  17. [Re] RESHETIKHIN (N.). — Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links, I-II, Preprint, L.O.M.I. 
  18. [R1] ROSSO (M.). — Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Commun. Math. Phys., t. 117, 1988, p. 581-593. Zbl0651.17008MR90c:17019
  19. [R2] ROSSO (M.). — Algèbres envelopantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non commutatif, Duke Math. J, t. 61, 1990, p. 11-39. Zbl0721.17013MR92i:17022
  20. [Sk] SKLYANIN (E.K.). — On an algebra generated by quadratic relations, Uspekhi Mat. Nauk, t. 40, 2, 1985, p. 214. MR87m:81135
  21. [Sk2] SKLYANIN (E.K.). — Some algebraic structures connected with the Yang-Baxter equation. Representations of the quantum algebra, Funct. An. Appl., t. 17, 1983, p. 34-48. Zbl0536.58007MR85k:82011
  22. [T] TAKEUCHI (M.). — Quantum Orthogonal and Symmetric Groups and their Embedding into Quantum GLn, Proc. Japan Acad. Ser. A, t. 65, 2, 1989, p. 55-58. Zbl0694.16009MR90j:16024
  23. [VS] VAKSMAN (L.L.) and SOIBELMAN (Ya.S.). — Algebra of functions on the quantum group SU(2), Funct. An. Appl., t. 22, 1988, p. 170-181. Zbl0679.43006MR90f:17019
  24. [W1] WORONOWICZ (S.L.). — Twisted SU(2) Group. An example of Non-Commutative Differential Calculus, Publ. RIMS, Kyoto Univ., t. 23, 1987, p. 117-181. Zbl0676.46050MR88h:46130
  25. [W2] WORONOWICZ (S.L.). — Compact matrix pseudogroups, Comm. in Math. Phys., t. 111, 1987, p. 613-665. Zbl0627.58034MR88m:46079
  26. [W3] WORONOWICZ (S.L.). — Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU (N) groups, Invent. Math., t. 93, 1988, p. 35-76. Zbl0664.58044MR90e:22033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.