Bivariant cohomology and S 1 -spaces

Andréa Solotar

Bulletin de la Société Mathématique de France (1992)

  • Volume: 120, Issue: 4, page 397-412
  • ISSN: 0037-9484

How to cite

top

Solotar, Andréa. "Bivariant cohomology and $S^1$-spaces." Bulletin de la Société Mathématique de France 120.4 (1992): 397-412. <http://eudml.org/doc/87650>.

@article{Solotar1992,
author = {Solotar, Andréa},
journal = {Bulletin de la Société Mathématique de France},
keywords = {cyclic homology; equivariant cohomology; Connes-Gysin sequence; bivariant cohomology; cyclic cohomology},
language = {eng},
number = {4},
pages = {397-412},
publisher = {Société mathématique de France},
title = {Bivariant cohomology and $S^1$-spaces},
url = {http://eudml.org/doc/87650},
volume = {120},
year = {1992},
}

TY - JOUR
AU - Solotar, Andréa
TI - Bivariant cohomology and $S^1$-spaces
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 4
SP - 397
EP - 412
LA - eng
KW - cyclic homology; equivariant cohomology; Connes-Gysin sequence; bivariant cohomology; cyclic cohomology
UR - http://eudml.org/doc/87650
ER -

References

top
  1. [B] BURGHELEA (D.). — The cyclic homology of the group rings, Comment. Math. Helv., t. 60, 1985, p. 354-365. Zbl0595.16022MR88e:18007
  2. [B-F] BURGHELEA (D.) and FIEDOROWICZ (Z.). — Cyclic homology and algebraic K-theory of spaces, II, Topology, t. 25, 1986, p. 303-317. Zbl0639.55003MR88i:18009b
  3. [B-G] BECKER (J.) and GOTTLIEB (D.). — Transfer maps for fibrations and duality, Compositio Math., t. 33 (2), 1976, p. 107-134. Zbl0354.55009MR55 #9087
  4. [C] CRABB (M.). — Invariants of fixed point free actions, preprint. Zbl0696.55011
  5. [C-S] CRABB (M.) and SUTHERLAND (W.). — The space of sections of a sphere bundle, I, Proc. Edinburgh Math. Soc., t. 29, 1986, p. 383-403. Zbl0614.55012MR88f:55010
  6. [Co] CONNES (A.). — Cohomologie cyclique et foncteurs Extn, C. R. Acad. Sci. Paris, t. 296, 1983, p. 953-958. Zbl0534.18009MR86d:18007
  7. [D-P] DOLD (A.) and PUPPE (D.). — Duality, trace and transfer, Proc. Steklov Inst. Math., t. 4, 1984, p. 85-103. Zbl0556.55006
  8. [E-M] EILENBERG (S.) and MOORE (J.). — Homology and fibrations I : Coalgebras, cotensor product and its derived functors, Comment. Math. Helv., t. 40, 1966, p. 199-236. Zbl0148.43203MR34 #3579
  9. [G] GOODWILLIE (T.). — Cyclic homology, derivations and the free loop space, Topology, t. 24, 1985, p. 953-968. Zbl0569.16021MR87c:18009
  10. [J] JONES (J.D.S.). — Cyclic homology and equivariant homology, Invent. Math., t. 87, 1987, p. 403-423. Zbl0644.55005MR88f:18016
  11. [J-K] JONES (J.D.S.) and KASSEL (Ch.). — Bivariant cyclic theory, K-Theory, t. 3 (4), 1989, p. 339-366. Zbl0755.18008MR91f:19001
  12. [K1] KASSEL (Ch.). — Cyclic homology, comodules and mixed complexes, J. Algebra, t. 107, 1987, p. 195-216. Zbl0617.16015MR88k:18019
  13. [K2] KASSEL (Ch.). — Caractère de Chern bivariant, K-Theory, t. 3 (4), 1989, p. 367-400. Zbl0701.18008MR91f:19002
  14. [K3] KASSEL (Ch.). — Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math., t. 408, 1990, p. 159-180. Zbl0691.18002MR92d:19002
  15. [L1] LODAY (J.-L.). — Cyclic homology, a survey, Banach Center Publ., t. 18, 1986, p. 281-304. Zbl0637.16013MR89e:18023
  16. [L2] LODAY (J.-L.). — Cyclic homology, à paraître. 
  17. [L-Q] LODAY (J.-L.) and QUILLEN (D.). — Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv., t. 59, 1984, p. 565-591. Zbl0565.17006MR86i:17003
  18. [S] SWITZER (R.). — Algebraic topology : homotopy and homology, Berlin Springer-Verlag, 1975, Die Grund der mathematischen Wissenschaften, 212. Zbl0305.55001MR52 #6695
  19. [TD] TOM DIECK (T.). — Transformation groups. — de Gruyter, 1987. Zbl0611.57002MR89c:57048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.