Ends of varieties

H. Alexander

Bulletin de la Société Mathématique de France (1992)

  • Volume: 120, Issue: 4, page 523-547
  • ISSN: 0037-9484

How to cite

top

Alexander, H.. "Ends of varieties." Bulletin de la Société Mathématique de France 120.4 (1992): 523-547. <http://eudml.org/doc/87655>.

@article{Alexander1992,
author = {Alexander, H.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {analytic subset; complex variety; pseudoconvex domain; boundary behaviour},
language = {eng},
number = {4},
pages = {523-547},
publisher = {Société mathématique de France},
title = {Ends of varieties},
url = {http://eudml.org/doc/87655},
volume = {120},
year = {1992},
}

TY - JOUR
AU - Alexander, H.
TI - Ends of varieties
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 4
SP - 523
EP - 547
LA - eng
KW - analytic subset; complex variety; pseudoconvex domain; boundary behaviour
UR - http://eudml.org/doc/87655
ER -

References

top
  1. [1] ALEXANDER (H.). — Polynomial approximation and hulls in sets of finite linear measure in Cn, Amer. J. Math., t. 93, 1971, p. 65-74. Zbl0221.32011MR44 #1841
  2. [2] ALEXANDER (H.). — The polynomial hull of a rectifiable curve in Cn, Amer. J. Math., t. 110, 1988, p. 629-640. Zbl0659.32017MR89m:32030
  3. [3] ALEXANDER (H.). — Linear measure on plane continua of finite linear measure, Ark. Mat., t. 27, 1989, p. 169-177. Zbl0687.30009MR90m:28002
  4. [4] BERNDTSSON (B.). — Integral formulae for the ∂∂-equation and zeros of bounded holomorphic functions on the unit ball, Math. Ann., t. 249, 1980, p. 163-176. Zbl0414.31007MR81m:32012
  5. [5] DAVIE (A.) and ØKSENDAL (B.). — Peak interpolation sets for some algebras of analytic functions, Pacific J. Math., t. 41, 1972, p. 81-87. Zbl0218.46050MR46 #9394
  6. [6] EILENBERG (S.) and HARROLD (O.). — Continua of finite linear measure I., Amer. J. Math., t. 65, 1943, p. 137-146. Zbl0063.01227MR4,172e
  7. [7] FALCONER (K.). — The Geometry of Fractal Sets, Cambridge. — Cambridge Univ. Press, 1985. Zbl0587.28004
  8. [8] FEDERER (H.). — Geometric Measure Theory. — Springer-Verlag, 1969. Zbl0176.00801MR41 #1976
  9. [9] FORNAESS (J.-E.). — Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., t. 98, 1976, p. 529-569. Zbl0334.32020MR54 #10669
  10. [10] FORSTNERIC (F.). — Regularity of varieties in strictly pseudoconvex domains, Publ. Math., t. 32, 1988, p. 145-150. Zbl0737.32008MR89d:32021
  11. [11] GAMELIN (T.). — Uniform Algebras. — Prentice Hall, 1969. Zbl0213.40401MR53 #14137
  12. [12] GLOBEVNIK (J.) and STOUT (E.L.). — The ends of varieties, Amer. J. Math., t. 108, 1986, p. 1355-1410. Zbl0678.32005MR88m:32008
  13. [13] GLOBEVNIK (J.) and STOUT (E.L.). — The ends of discs, Bull. Soc. Math. France, t. 114, 1986, p. 175-195. Zbl0605.32006MR88c:32007
  14. [14] GLOBEVNIK (J.) and STOUT (E.L.). — Boundary regularity for holomorphic maps from the disc to the ball, Math. Scand., t. 60, 1987, p. 31-38. Zbl0611.30026MR89c:32033
  15. [15] GLOBEVNIK (J.) and STOUT (E.L.). — Analytic discs with rectifiable simple closed curves as ends, Ann. Math., t. 127, 1988, p. 389-401. Zbl0644.32003MR89g:32009
  16. [16] HENKIN and CIRKA (E.). — Boundary properties of holomorphic functions of several complex variables, J. Sov. Math., t. 5, 1976, p. 612-687. Zbl0375.32005
  17. [17] RIESZ (F.) and (M.). — Uber die Randwerte einer analytischen Funktion, 4e Congres des Math. Scand., Stockholm, 1916, p. 27-44. JFM47.0295.03
  18. [18] ROSAY (J.-P.). — A remark on a theorem of Forstnerič. — Preprint, 1989. 
  19. [19] RUDIN (W.). — Function Theory in the Unit Ball in Cn. — Springer-Verlag, 1980. Zbl0495.32001MR82i:32002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.