Surfaces minimales non orientables de genre quelconque

E. Toubiana

Bulletin de la Société Mathématique de France (1993)

  • Volume: 121, Issue: 2, page 183-195
  • ISSN: 0037-9484

How to cite

top

Toubiana, E.. "Surfaces minimales non orientables de genre quelconque." Bulletin de la Société Mathématique de France 121.2 (1993): 183-195. <http://eudml.org/doc/87664>.

@article{Toubiana1993,
author = {Toubiana, E.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Henneberg surface; Klein bottle},
language = {fre},
number = {2},
pages = {183-195},
publisher = {Société mathématique de France},
title = {Surfaces minimales non orientables de genre quelconque},
url = {http://eudml.org/doc/87664},
volume = {121},
year = {1993},
}

TY - JOUR
AU - Toubiana, E.
TI - Surfaces minimales non orientables de genre quelconque
JO - Bulletin de la Société Mathématique de France
PY - 1993
PB - Société mathématique de France
VL - 121
IS - 2
SP - 183
EP - 195
LA - fre
KW - Henneberg surface; Klein bottle
UR - http://eudml.org/doc/87664
ER -

References

top
  1. [1] GACKSTATTER (F.) and KUNERT (R.). — Construktion vollstandiger minimal flachen von endlicher gesomtkrummung, Arch. Rational Mech. Anal., t. 65, 1977, p. 289-297. Zbl0357.53004MR56 #6573
  2. [2] GERRETSEN (J.) and SANSONE (G.). — Lectures on the theory of functions of a complex variable. - P. Noordhoff, Groningen, 1960. Zbl0093.26803MR22 #4819
  3. [3] ISHIHARA (T.). — Complete non-orientable minimal surfaces, preprint, 1989. 
  4. [4] KICHOON (Y.). — Meromorphic functions on a compact Riemann surface and associated complete minimal surface, Proc. A.M.S., vol. 105, 3, 1989. Zbl0669.53007MR89h:53029
  5. [5] KLOTZ (T.) and SARIO (L.). — Existence of complete minimal surfaces of arbitrary connectivity and genus, Proc. Nat. Acad. Sci. U.S.A., t. 54, 1965, p. 42-44. Zbl0154.21202MR31 #2665
  6. [6] MEEKS III (W.H.). — The classification of complete minimal surfaces with total curvature greater than -8π, Duke Math. J., t. 48, 1981, p. 523-535. Zbl0472.53010
  7. [7] ELISA (M.) and DE OLIVEIRA (G.G.). — Some new examples of non-orientable minimal surfaces, Proc. A.M.S., 98, n° 4, 1986, p. 629-635. Zbl0607.53003
  8. [8] ROSENBERG (H.) and TOUBIANA (E.). — Complete minimal surfaces and minimal herissons, J. Differential Geom., t. 28, 1988, p. 115-132. Zbl0657.53004MR89g:53010
  9. [9] ZHANG (S.). — On complete minimal immersion x : RP2 - a, b A T T R3 with total curvature -10π, preprint, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.