La semi-caractéristique d’Euler-Poincaré des faisceaux ω -quadratiques sur un schéma de Cohen-Macaulay

Christoph Sorger

Bulletin de la Société Mathématique de France (1994)

  • Volume: 122, Issue: 2, page 225-233
  • ISSN: 0037-9484

How to cite

top

Sorger, Christoph. "La semi-caractéristique d’Euler-Poincaré des faisceaux $\omega $-quadratiques sur un schéma de Cohen-Macaulay." Bulletin de la Société Mathématique de France 122.2 (1994): 225-233. <http://eudml.org/doc/87688>.

@article{Sorger1994,
author = {Sorger, Christoph},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Euler-Poincaré semi-characteristic; symplectic sheaf; Cohen-Macaulay morphism; semi-stable quadratic sheaves},
language = {fre},
number = {2},
pages = {225-233},
publisher = {Société mathématique de France},
title = {La semi-caractéristique d’Euler-Poincaré des faisceaux $\omega $-quadratiques sur un schéma de Cohen-Macaulay},
url = {http://eudml.org/doc/87688},
volume = {122},
year = {1994},
}

TY - JOUR
AU - Sorger, Christoph
TI - La semi-caractéristique d’Euler-Poincaré des faisceaux $\omega $-quadratiques sur un schéma de Cohen-Macaulay
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 2
SP - 225
EP - 233
LA - fre
KW - Euler-Poincaré semi-characteristic; symplectic sheaf; Cohen-Macaulay morphism; semi-stable quadratic sheaves
UR - http://eudml.org/doc/87688
ER -

References

top
  1. [1] ATIYAH (M.F.). — Riemann Surfaces and Spin Structures, Ann. Scient. Éc. Norm. Sup., 4e série, t. 4, 1971, p. 47-62. Zbl0212.56402MR44 #3350
  2. [2] M. F. Atiyah (M.F.) and REES (E.). — Vector bundles on Projective 3-space, Invent. Math., t. 35, 1976, p. 131-153. Zbl0332.32020MR54 #7870
  3. [3] HARTSHORNE (R.). — Residues and Duality. — Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966. Zbl0212.26101MR36 #5145
  4. [4] KEMPF (G.). — Deformations of Semi-Euler Characteristics, Amer. J. of Math., t. 114, 1992, p. 973-978. Zbl0780.14012MR93k:14025
  5. [5] MATSUMURA (H.). — Commutative Ring Theory. — Cambridge Studies in Advanced Math. 8, Cambridge University Press, Cambridge, 1980. 
  6. [6] MUMFORD (D.). — Theta-Characteristics of an Algebraic Curve, Ann. Scient. Éc. Norm. Sup., 4e série, t. 4, 1971, p. 181-192. Zbl0216.05904MR45 #1918
  7. [7] PESKINE (C.). — Introduction algébrique à la géométrie projective. — Cours de DEA, Univ. Paris VI, 1990. 
  8. [8] SORGER (C.). — Thêta-caractéristiques des courbes tracées sur une surface lisse, J. reine angew. Math. (Journal de Crelle), t. 435, 1993, p. 83-118. Zbl0757.14024MR94b:14026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.