Smoothness and irreducibility of varieties of plane curves with nodes and cusps

Eugenii Shustin

Bulletin de la Société Mathématique de France (1994)

  • Volume: 122, Issue: 2, page 235-253
  • ISSN: 0037-9484

How to cite

top

Shustin, Eugenii. "Smoothness and irreducibility of varieties of plane curves with nodes and cusps." Bulletin de la Société Mathématique de France 122.2 (1994): 235-253. <http://eudml.org/doc/87689>.

@article{Shustin1994,
author = {Shustin, Eugenii},
journal = {Bulletin de la Société Mathématique de France},
keywords = {irreducible curves; degree; nodes; cusps},
language = {eng},
number = {2},
pages = {235-253},
publisher = {Société mathématique de France},
title = {Smoothness and irreducibility of varieties of plane curves with nodes and cusps},
url = {http://eudml.org/doc/87689},
volume = {122},
year = {1994},
}

TY - JOUR
AU - Shustin, Eugenii
TI - Smoothness and irreducibility of varieties of plane curves with nodes and cusps
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 2
SP - 235
EP - 253
LA - eng
KW - irreducible curves; degree; nodes; cusps
UR - http://eudml.org/doc/87689
ER -

References

top
  1. [1] GREUEL (G.-M.) and KARRAS (U.). — Families of varieties with prescribed singularities, Compositio Math., t. 69 (1), 1989, p. 83-110. Zbl0684.32015MR90d:32037
  2. [2] HARRIS (J.). — On the Severi problem, Invent. Math., t. 84, 1985, p. 445-461. Zbl0596.14017MR87f:14012
  3. [3] HARTSHORNE (R.). — Algebraic geometry. — New York, Springer, 1977. Zbl0367.14001MR57 #3116
  4. [4] HIRSCHOWITZ (A.). — Une conjecture pour la cohomologie des diviseurs sur les surfaces rationelles génériques, J. Reine Angew. Math., t. 397, 1989, p. 208-213. Zbl0686.14013MR90g:14021
  5. [5] HIRZEBRUCH (F.). — Singularities of algebraic surface and characteristic numbers, Contemp. Math., t. 58, 1986, p. 141-155. Zbl0601.14030MR87j:14057
  6. [6] IVINSKIS (K.). — Normale Flächen und die Miyaoka-Kobayashi Ungleichung. — Diplomarbeit, Bonn, 1985. 
  7. [7] KANG (P.-L.). — On the variety of plane curves of degree d with δ nodes and k cusps, Trans. Amer. Math. Soc., t. 316 (1), 1989, p. 165-192. Zbl0702.14019MR90g:14014
  8. [9] KANG (P.-L.). — A note on the variety of plane curves with nodes and cusps, Proc. Amer. Math. Soc., t. 106 (2), 1989, p. 309-312. Zbl0702.14020MR89k:14046
  9. [9] SEVERI (F.). — Vorlesungen über algebraische Geometrie (Anhang F). — Leipzig, Teubner, 1921. JFM48.0687.01
  10. [10] SHUSTIN (E.). — Smoothness and irreducibility of varieties of plane singular curves, Arithmetic and geometry of varieties, Kuibyshev, Kuibyshev Univ. Press, 1989, p. 132-145 (Russian). Zbl0767.14010
  11. [11] SHUSTIN (E.). — Geometry of discriminant and topology of algebraic curves, Proc. Intern. Congress Math., Kyoto, Aug. 21-29, 1990, vol. 1, Kyoto, 1991, p. 559-567. Zbl0802.14013
  12. [12] SHUSTIN (E.). — On manifolds of singular algebraic curves, Selecta Math. Soviet., t. 10 (1), 1991, p. 27-37. Zbl0804.14011MR1099434
  13. [13] SHUSTIN (E.). — Real plane algebraic curves with prescribed singularities, Topology, t. 32 (4), 1993, p. 845-856. Zbl0845.14017MR95f:14049
  14. [14] VAN DER WAERDEN (B.L.). — Einführung in die algebraische Geometrie. — 2nd ed., Berlin, Springer, 1973. Zbl0264.14001
  15. [15] ZARISKI (O.). — Algebraic surfaces. — 2nd ed., Heidelberg, Springer, 1971. Zbl0219.14020MR57 #9695

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.