On the Hausdorff dimension of Julia sets of meromorphic functions. II

Janina Kotus

Bulletin de la Société Mathématique de France (1995)

  • Volume: 123, Issue: 1, page 33-46
  • ISSN: 0037-9484

How to cite

top

Kotus, Janina. "On the Hausdorff dimension of Julia sets of meromorphic functions. II." Bulletin de la Société Mathématique de France 123.1 (1995): 33-46. <http://eudml.org/doc/87710>.

@article{Kotus1995,
author = {Kotus, Janina},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Julia set; meromorphic function; Hausdorff dimension; Baker domains},
language = {eng},
number = {1},
pages = {33-46},
publisher = {Société mathématique de France},
title = {On the Hausdorff dimension of Julia sets of meromorphic functions. II},
url = {http://eudml.org/doc/87710},
volume = {123},
year = {1995},
}

TY - JOUR
AU - Kotus, Janina
TI - On the Hausdorff dimension of Julia sets of meromorphic functions. II
JO - Bulletin de la Société Mathématique de France
PY - 1995
PB - Société mathématique de France
VL - 123
IS - 1
SP - 33
EP - 46
LA - eng
KW - Julia set; meromorphic function; Hausdorff dimension; Baker domains
UR - http://eudml.org/doc/87710
ER -

References

top
  1. [1] BAKER (I.N.). — The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A, I. Math., t. 1, 1975, p. 277-283. Zbl0329.30019MR53 #5867
  2. [2] BAKER (I.N.), KOTUS (J.) and LÜ (Y.). — Iterates of meromorphic functions I, Ergod. Th. Dynam. Sys., t. 11, 1991, p. 241-248. Zbl0711.30024MR92m:58113
  3. [3] BAKER (I.N.), KOTUS (J.) and LÜ (Y.). — Iterates of meromorphic functions II : Examples of wandering domains, J. London Math. Soc., t. 42, 2, 1990, p. 267-278. Zbl0726.30022MR92m:58114
  4. [4] BAKER (I.N.), KOTUS (J.) and LÜ (Y.). — Iterates of meromorphic functions III : Preperiodic domains, Ergod. Th. Dynam. Sys., t. 11, 1991, p. 603-618. Zbl0774.30023MR92m:58115
  5. [5] BAKER (I.N.), KOTUS (J.) and LÜ (Y.). — Iterates of meromorphic functions IV : Critically finite functions, Results in Mathematics, t. 22, 1992, p. 651-656. Zbl0774.30024MR94c:58166
  6. [6] BROLIN (H.). — Invariant sets under iteration of rational functions, Arkiv für Mathematik, t. 6, 1965, p. 103-144. Zbl0127.03401MR33 #2805
  7. [7] BOAS (R.P.). — Entire Functions. — Academic Press, New York, 1954. Zbl0058.30201MR16,914f
  8. [8] DEVANEY (R.L.) and KEEN (L.). — Dynamics of meromorphic maps with polynomial Schwarzian derivative, Ann. Sci. École Norm. Sup., t. 22, 1989, p. 55-81. Zbl0666.30017MR90e:58071
  9. [9] DUREN (P.L.). — Univalent Functions. — Springer, New York, 1983. Zbl0514.30001MR85j:30034
  10. [10] GARBER (V.). — On the iteration of rational functions, Math. Proc. Camb. Phil. Soc., t. 84, 1978, p. 497-505. Zbl0399.30017MR58 #11343
  11. [11] GRACZYK (J.) and ŚWIATEK (G.). — Critical circle maps near bifurcation, preprint SUNY, Stony Brook, IMS n° 1991/8. 
  12. [12] KOTUS (J.). — On the Hausdorff dimension of Julia sets of meromorphic functions I, Bull. Soc. Math. France, t. 122, 1994, p. 305-331. Zbl0818.30014MR96a:30030
  13. [13] STALLARD (G.). — The Hausdorff dimension of Julia sets of entire functions, Ergod. Th. Dynam. Sys., t. 11, 1991, p. 769-777. Zbl0728.58015MR93e:30060
  14. [14] WITTICH (H.). — Eindeutige Lösungen der Differentialgleichung w′ = R(z, w), Math. Z., t. 74, 1960, p. 278-288. Zbl0091.26102MR22 #11167

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.