Sur l'annulation de l'homologie du complexe de Koszul gradué

Marc Chardin

Bulletin de la Société Mathématique de France (1995)

  • Volume: 123, Issue: 1, page 87-105
  • ISSN: 0037-9484

How to cite

top

Chardin, Marc. "Sur l'annulation de l'homologie du complexe de Koszul gradué." Bulletin de la Société Mathématique de France 123.1 (1995): 87-105. <http://eudml.org/doc/87712>.

@article{Chardin1995,
author = {Chardin, Marc},
journal = {Bulletin de la Société Mathématique de France},
keywords = {homology module; Koszul complex},
language = {fre},
number = {1},
pages = {87-105},
publisher = {Société mathématique de France},
title = {Sur l'annulation de l'homologie du complexe de Koszul gradué},
url = {http://eudml.org/doc/87712},
volume = {123},
year = {1995},
}

TY - JOUR
AU - Chardin, Marc
TI - Sur l'annulation de l'homologie du complexe de Koszul gradué
JO - Bulletin de la Société Mathématique de France
PY - 1995
PB - Société mathématique de France
VL - 123
IS - 1
SP - 87
EP - 105
LA - fre
KW - homology module; Koszul complex
UR - http://eudml.org/doc/87712
ER -

References

top
  1. [A] AMOROSO (F.). — On a conjecture of C. Berenstein and A. Yger, Preprint Univ. Padova, 1992 (à paraître dans les actes de MEGA'94). 
  2. [BA] BOURBAKI (N.). — Algèbre. — Masson & CCLS, 1970, 1980 et 1981. 
  3. [BAC] BOURBAKI (N.). — Algèbre commutative. — Masson, 1983, 1985. 
  4. [C] CHARDIN (M.). — Une majoration pour la fonction de Hilbert et ses conséquences pour l'interpolation algébrique, Bull. Soc. Math. France, t. 117, 1989, p. 305-318. Zbl0709.13007MR90m:13021
  5. [G-H] GIUSTI (M.) et HEINTZ (J.). — La détermination de la dimension et des points isolés d'une variété algébrique peuvent s'effectuer en temps polynomial, Computing in Algebraic Geometry, D. Eisenbud & L. Robbiano (eds), Cambridge University Press, 1983. 
  6. [J] JOUANOLOU (J.-P.). — Théorèmes de Bertini et applications. — Progress in Math., Birkhäuser, Boston, 1983. Zbl0519.14002MR86b:13007
  7. [K] KUNTZ (E.). — Introduction to Commutative Algebra and Algebraic Geometry. — Birkhäuser, 1985. 
  8. [L] LANG (S.). — Algebra. — Second Edition, Addison-Wesley, 1984. 
  9. [N] NORTHCOTT (D.G.). — Lessons on rings, modules and multiplicities. — Cambridge Univ. Press, 1968. Zbl0159.33001MR38 #144
  10. [N-R] NORTHCOTT (D.G.) and REES (D.). — Reductions of ideals in local rings, Proc. Cambridge Phil. Soc., t. 50, 1954, p. 145-158. Zbl0057.02601MR15,596a
  11. [L-T] LIPMAN (J.) and TEISSIER (B.). — Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J., t. 28, 1981, p. 97-116. Zbl0464.13005MR82f:14004
  12. [Z-S] ZARISKI (O.) and SAMUEL (P.). — Commutative Algebra, vol. 2, Springer-Verlag, Berlin-Heidelberg-New York, 1986 (reprint of the 1960 edition). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.