Quotient de la variété des points infiniment voisins d’ordre 9 sous l’action de PGL 3

Abdelghani El Mazouni

Bulletin de la Société Mathématique de France (1996)

  • Volume: 124, Issue: 3, page 425-455
  • ISSN: 0037-9484

How to cite

top

El Mazouni, Abdelghani. "Quotient de la variété des points infiniment voisins d’ordre 9 sous l’action de $\text{PGL}_3$." Bulletin de la Société Mathématique de France 124.3 (1996): 425-455. <http://eudml.org/doc/87745>.

@article{ElMazouni1996,
author = {El Mazouni, Abdelghani},
journal = {Bulletin de la Société Mathématique de France},
keywords = {infinitely near points; algebraic group actions; field of invariant rational functions; rationality of moduli spaces of pointed plane curves},
language = {fre},
number = {3},
pages = {425-455},
publisher = {Société mathématique de France},
title = {Quotient de la variété des points infiniment voisins d’ordre 9 sous l’action de $\text\{PGL\}_3$},
url = {http://eudml.org/doc/87745},
volume = {124},
year = {1996},
}

TY - JOUR
AU - El Mazouni, Abdelghani
TI - Quotient de la variété des points infiniment voisins d’ordre 9 sous l’action de $\text{PGL}_3$
JO - Bulletin de la Société Mathématique de France
PY - 1996
PB - Société mathématique de France
VL - 124
IS - 3
SP - 425
EP - 455
LA - fre
KW - infinitely near points; algebraic group actions; field of invariant rational functions; rationality of moduli spaces of pointed plane curves
UR - http://eudml.org/doc/87745
ER -

References

top
  1. [1] BARTH (W.), PETERS (C.) and VAN DE VEN (A.). — Compact complex surfaces, Ergebnisse..., série 3, n° 4, Springer, 1984. Zbl0718.14023MR86c:32026
  2. [2] BELGHITI (M.). — Variété des points infiniment voisins d'ordre n des points du plan, C.R. Acad. Sci. Paris, t. 314, série I, 1992, p. 541-545. Zbl0815.14002MR93a:14046
  3. [3] COLLEY (S.) and KENNEDY (G.). — Triple and quadruple contact of plane curves, in Enumerative algebraic geometry, Kleiman and Thorup eds, p. 31-60, Contemporary mathematics 123, Amer. Math. Soc., 1991. Zbl0760.14022MR93c:14042
  4. [4] DEMAZURE (M.). — A, B, C, D, E, F, etc. Séminaire sur les singularités de surfaces, Lectures Notes Math. 777, Springer, Heidelberg, 1980. Zbl0431.15020MR82d:14021
  5. [5] DOLGACHEV (I.). — Rationality of fields of invariants, Proc. Sympos. Pure Math., t. 46, 1987, p. 3-16. Zbl0659.14009MR89b:14064
  6. [6] NARASIMHAN (D.). — Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Inventiones Math., t. 97, 1987, p. 54-94. Zbl0689.14012
  7. [7] GRUSON (L.). — Un aperçu des travaux mathématiques de G.H. Halphen, in Complex projective geometry, Ellingsrud et al. eds, p. 189-198, Lecture notes series 179, Cambridge University Press, 1992. Zbl0871.01020MR94b:14002
  8. [8] HALPHEN (G.H.). — Sur les invariants différentiels, 1878, in Œuvres complètes de G.H. Halphen, tome II, Gautiers-Villars, 1918. 
  9. [9] LOOIJENGA (E.). — Cohomology of M3 and M13, in Mapping class groups and moduli spaces of Riemann surfaces, Contemporary Mathematics 150, Amer. Math. Soc., 1993, p. 205-228. Zbl0814.14029MR94i:14032
  10. [10] MUMFORD (D.). — Curves and their Jacobians. — Univ. of Michigan Press, Ann Arbor, 1975. Zbl0316.14010MR54 #7451
  11. [11] MUMFORD (D.) and FOGARTY (F.). — Geometric invariant theory (second edition). — Ergebnisse..., n° 34, Springer, 1982. Zbl0504.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.