Connexité abélienne des variétés kählériennes compactes

Frédéric Campana

Bulletin de la Société Mathématique de France (1998)

  • Volume: 126, Issue: 4, page 483-506
  • ISSN: 0037-9484

How to cite

top

Campana, Frédéric. "Connexité abélienne des variétés kählériennes compactes." Bulletin de la Société Mathématique de France 126.4 (1998): 483-506. <http://eudml.org/doc/87791>.

@article{Campana1998,
author = {Campana, Frédéric},
journal = {Bulletin de la Société Mathématique de France},
keywords = {fundamental groups; compact Kähler manifolds},
language = {fre},
number = {4},
pages = {483-506},
publisher = {Société mathématique de France},
title = {Connexité abélienne des variétés kählériennes compactes},
url = {http://eudml.org/doc/87791},
volume = {126},
year = {1998},
}

TY - JOUR
AU - Campana, Frédéric
TI - Connexité abélienne des variétés kählériennes compactes
JO - Bulletin de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 126
IS - 4
SP - 483
EP - 506
LA - fre
KW - fundamental groups; compact Kähler manifolds
UR - http://eudml.org/doc/87791
ER -

References

top
  1. [A-N] ARAPURA (D.), NORI (M.). — Solvable fundamental groups of algebraic varieties and Kähler manifolds. — Preprint. Zbl0971.14020
  2. [Be] BEAUVILLE (A.). — Annulation du H1 pour les fibrés en droites plats, Lecture Notes, t. 1507, p. 1-15. Zbl0792.14006MR94a:14048
  3. [C1] CAMPANA (F.). — Réduction d'Albanese d'un morphisme kählérien propre, I et II, Comp. Math., t. 54, 1985, p. 378-416. Zbl0609.32008
  4. [C2] CAMPANA (F.). — Coréduction algébrique d'un espace analytique faiblement kählérien compact, Inv. Math., t. 63, 1981, p. 187-223. Zbl0436.32024MR84e:32028
  5. [C3] CAMPANA (F.). — Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. S.M.F., t. 122, 1994, p. 255-284. Zbl0810.32013MR95f:32036
  6. [C4] CAMPANA (F.). — On twistor spaces of class C, J. Diff. Geom., t. 33, 1991, p. 541-549. Zbl0694.32017MR92g:32059
  7. [C5] CAMPANA (F.). — Remarques sur les groupes de Kähler nilpotents, Ann. Sci. École Normale Sup., t. 28, 1995, p. 307-316. Zbl0829.32006MR96f:32053
  8. [C6] CAMPANA (F.). — Connexité abélienne des variétés kählériennes compactes, C. R. Acad. Sci. Paris, t. 325, 1997, p. 755-758. Zbl0899.53050MR98m:32044
  9. [C7] CAMPANA (F.). — g-connectedness of compact Kähler manifolds, I, Soumis aux Proceedings of the Conference “Hirzebruch 70”, Warsaw 1998, (Szurek, Wisniewski éd., Pragacz), Amer. Math. Soc. Zbl0965.32021
  10. [C8] CAMPANA (F.). — g-connectedness of compact Kähler manifolds, II, soumis aux Proceedings of the Conference dedicated to the memory of Kurosh (Moscou, mai 1998). 
  11. [D] DELIGNE (P.). — Théorie de Hodge, II, Publ. IHES, t. 40, 1972, p. 5-57. Zbl0219.14007
  12. [D-G-M-S] DELIGNE (P.), GRIFFITHS (P.), MORGAN (J.), SULLIVAN (D.). — Real homotopy theory of compact Kähler manifolds, Inv. Math., t. 29, 1975, p. 245-274. Zbl0312.55011MR52 #3584
  13. [H] HAIN (R.). — The de Rham homotopy theory of complex algebraic varieties, I, K-theory, t. 1, 1987, p. 271-324. Zbl0637.55006MR88h:14029
  14. [K1] KOLLÁR (J.). — Shafarevich maps and automorphic forms. — Princeton Univ. Press, 1995. Zbl0871.14015MR96i:14016
  15. [O-Z] OGUISO (K.), ZAIDENBERG (M.). — On fundamental groups of elliptically connected surfaces. — Prépublication Institut Fourier, 1996. 
  16. [S] SEGAL (D.). — Polycyclic groups. — Cambridge Univ. Press, 1983. Zbl0516.20001MR85h:20003
  17. [S-V] SOMMESE (A.), VAN DE VEN (A.). — Homotopy groups of pullbacks of varieties, Nagoya Math. J., t. 102, 1986, p. 79-90. Zbl0564.14010MR87i:14016
  18. [Z] ZAIDENBERG (M.). — Problems on open algebraic varieties, in “Problems on open algebraic varieties”. — P. Russel éd., Montréal, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.