Caractérisation d'une solution optimale au problème de Monge-Kantorovitch
Taoufiq Abdellaoui; Henri Heinich
Bulletin de la Société Mathématique de France (1999)
- Volume: 127, Issue: 3, page 429-443
- ISSN: 0037-9484
Access Full Article
topHow to cite
topReferences
top- [1] ABDELLAOUI (T.), HEINICH (H.). — Sur la distance de deux lois de probabilités dans le cas vectoriel, C. R. Acad. Sci. Paris, t. 319, série I, 1994, p. 981-984. Zbl0808.60008MR95h:60007
- [2] BICKEL (P.J.), FREEDMAN (D.A.). — Some asymptotic Theory for the Bootstrap, Ann. Statis., t. 9, 1981, p. 1196-1217. Zbl0449.62034MR83a:62051
- [3] BELILI (N.), HEINICH (H.). — Mass Transport Problem and Derivation, à paraître dans Appli. Mathematicae, 1999. Zbl0998.60012MR2001a:60016
- [4] CUESTA-ALBERTOS (J.A.), MATRÁN (C.). — Notes on the Wasserstein Metric in Hilbert Spaces, Ann. Prob., t. 17, 1989, p. 1264-1276. Zbl0688.60011MR90k:60029
- [5] CUESTA-ALBERTOS (J.A.), TUERO-DIAZ (A.). — A Characterization for the Solution of the Monge-Kantorovich Mass Transference Problem, Statist. Probab. Lett., t. 16, 1993, p. 147-152. Zbl0765.60010MR94g:60024
- [6] CUESTA-ALBERTOS (J.A.), MATRÁN (C.), RACHEV (S.T.), RÜSCHENDORF (L.). — Mass Transportation Problems in Probability Theory, App. Prob. Trust., t. 21, 1996, p. 1-39. MR97c:60045
- [7] COHN (D.L.). — Measure Theory. — Birkhäuser, 1980. Zbl0436.28001MR81k:28001
- [8] EKELAND (I.), TEMAM (R.). — Analyse convexe et problèmes variationnels. — Dunod, 1974. Zbl0281.49001MR57 #3931a
- [9] GANGBO (W.), MCCANN (R.J.). — Optimal Maps in Monge's Mass Transport Problem, C. R. Acad. Sci. Paris, t. 321, Série I, 1995, p. 1653-1658. Zbl0858.49002MR96i:49004
- [10] GANGBO (W.), MCCANN (R.J.). — The Geometry of optimal Transportation, Acta Math., t. 177, 1996, p. 113-161. Zbl0887.49017MR98e:49102
- [11] KNOTT (M.), SMITH (C.S.). — Note on the optimal Transportation of Distributions, J. Opt. Theor. Appl., t. 52, 1987, p. 323-329. Zbl0586.49005MR88d:90076
- [12] KELLERER (H.). — Duality Theorems for Marginal Problems, Z. Wahrsh. Verw. Gebiete, t. 67, 1984, p. 399-432. Zbl0535.60002MR86i:28010
- [13] MCCANN (R.J.). — Existence and Uniqueness of monotone measure-preserving Maps, Duke. Math. J., t. 80, 1995, p. 309-323. Zbl0873.28009MR97d:49045
- [14] RACHEV (S.T.), RÜSCHENDORF (L.). — A Characterization of random Variables with minimum L2 Distance, J. Multivariate Anal., t. 32, 1990, p. 48-54. Zbl0688.62034
- [15] RACHEV (S.T.). — Probability Metrics and the Stability of stochastic Models. — Wiley, New York, 1991. Zbl0744.60004MR93b:60012
- [16] ROCKAFELLAR (R.T.). — Convex Analysis. — Princeton University Press, 1972.
- [17] RÜSCHENDORF (L.). — Optimal Solutions of multivariate coupling Problems, Appl. Mathematicae, t. 23, 1995, p. 325-338. Zbl0844.62047MR96k:60043
- [18] ZAJIČEK (L.). — On the Differentiation of convex Functions in finite and infinite dimensional Spaces, Czechoslovak Math. J., t. 29, 1979, p. 340-348. Zbl0429.46007MR80h:46063