Caractérisation d'une solution optimale au problème de Monge-Kantorovitch

Taoufiq Abdellaoui; Henri Heinich

Bulletin de la Société Mathématique de France (1999)

  • Volume: 127, Issue: 3, page 429-443
  • ISSN: 0037-9484

How to cite

top

Abdellaoui, Taoufiq, and Heinich, Henri. "Caractérisation d'une solution optimale au problème de Monge-Kantorovitch." Bulletin de la Société Mathématique de France 127.3 (1999): 429-443. <http://eudml.org/doc/87813>.

@article{Abdellaoui1999,
author = {Abdellaoui, Taoufiq, Heinich, Henri},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Monge-Kantorovich problem; probabilities with fixed marginals; cyclic monotonicity; subdifferential},
language = {fre},
number = {3},
pages = {429-443},
publisher = {Société mathématique de France},
title = {Caractérisation d'une solution optimale au problème de Monge-Kantorovitch},
url = {http://eudml.org/doc/87813},
volume = {127},
year = {1999},
}

TY - JOUR
AU - Abdellaoui, Taoufiq
AU - Heinich, Henri
TI - Caractérisation d'une solution optimale au problème de Monge-Kantorovitch
JO - Bulletin de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 127
IS - 3
SP - 429
EP - 443
LA - fre
KW - Monge-Kantorovich problem; probabilities with fixed marginals; cyclic monotonicity; subdifferential
UR - http://eudml.org/doc/87813
ER -

References

top
  1. [1] ABDELLAOUI (T.), HEINICH (H.). — Sur la distance de deux lois de probabilités dans le cas vectoriel, C. R. Acad. Sci. Paris, t. 319, série I, 1994, p. 981-984. Zbl0808.60008MR95h:60007
  2. [2] BICKEL (P.J.), FREEDMAN (D.A.). — Some asymptotic Theory for the Bootstrap, Ann. Statis., t. 9, 1981, p. 1196-1217. Zbl0449.62034MR83a:62051
  3. [3] BELILI (N.), HEINICH (H.). — Mass Transport Problem and Derivation, à paraître dans Appli. Mathematicae, 1999. Zbl0998.60012MR2001a:60016
  4. [4] CUESTA-ALBERTOS (J.A.), MATRÁN (C.). — Notes on the Wasserstein Metric in Hilbert Spaces, Ann. Prob., t. 17, 1989, p. 1264-1276. Zbl0688.60011MR90k:60029
  5. [5] CUESTA-ALBERTOS (J.A.), TUERO-DIAZ (A.). — A Characterization for the Solution of the Monge-Kantorovich Mass Transference Problem, Statist. Probab. Lett., t. 16, 1993, p. 147-152. Zbl0765.60010MR94g:60024
  6. [6] CUESTA-ALBERTOS (J.A.), MATRÁN (C.), RACHEV (S.T.), RÜSCHENDORF (L.). — Mass Transportation Problems in Probability Theory, App. Prob. Trust., t. 21, 1996, p. 1-39. MR97c:60045
  7. [7] COHN (D.L.). — Measure Theory. — Birkhäuser, 1980. Zbl0436.28001MR81k:28001
  8. [8] EKELAND (I.), TEMAM (R.). — Analyse convexe et problèmes variationnels. — Dunod, 1974. Zbl0281.49001MR57 #3931a
  9. [9] GANGBO (W.), MCCANN (R.J.). — Optimal Maps in Monge's Mass Transport Problem, C. R. Acad. Sci. Paris, t. 321, Série I, 1995, p. 1653-1658. Zbl0858.49002MR96i:49004
  10. [10] GANGBO (W.), MCCANN (R.J.). — The Geometry of optimal Transportation, Acta Math., t. 177, 1996, p. 113-161. Zbl0887.49017MR98e:49102
  11. [11] KNOTT (M.), SMITH (C.S.). — Note on the optimal Transportation of Distributions, J. Opt. Theor. Appl., t. 52, 1987, p. 323-329. Zbl0586.49005MR88d:90076
  12. [12] KELLERER (H.). — Duality Theorems for Marginal Problems, Z. Wahrsh. Verw. Gebiete, t. 67, 1984, p. 399-432. Zbl0535.60002MR86i:28010
  13. [13] MCCANN (R.J.). — Existence and Uniqueness of monotone measure-preserving Maps, Duke. Math. J., t. 80, 1995, p. 309-323. Zbl0873.28009MR97d:49045
  14. [14] RACHEV (S.T.), RÜSCHENDORF (L.). — A Characterization of random Variables with minimum L2 Distance, J. Multivariate Anal., t. 32, 1990, p. 48-54. Zbl0688.62034
  15. [15] RACHEV (S.T.). — Probability Metrics and the Stability of stochastic Models. — Wiley, New York, 1991. Zbl0744.60004MR93b:60012
  16. [16] ROCKAFELLAR (R.T.). — Convex Analysis. — Princeton University Press, 1972. 
  17. [17] RÜSCHENDORF (L.). — Optimal Solutions of multivariate coupling Problems, Appl. Mathematicae, t. 23, 1995, p. 325-338. Zbl0844.62047MR96k:60043
  18. [18] ZAJIČEK (L.). — On the Differentiation of convex Functions in finite and infinite dimensional Spaces, Czechoslovak Math. J., t. 29, 1979, p. 340-348. Zbl0429.46007MR80h:46063

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.