Courbes pseudo-holomorphes équisingulières en dimension 4

Jean-François Barraud

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 2, page 179-206
  • ISSN: 0037-9484

How to cite

top

Barraud, Jean-François. "Courbes pseudo-holomorphes équisingulières en dimension 4." Bulletin de la Société Mathématique de France 128.2 (2000): 179-206. <http://eudml.org/doc/87825>.

@article{Barraud2000,
author = {Barraud, Jean-François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {pseudo-holomorphic curve; equisingular curve; modular spaces; line arrangement; moduli space; genus; homology; almost complex manifold; pseudo-holomorphic line},
language = {fre},
number = {2},
pages = {179-206},
publisher = {Société mathématique de France},
title = {Courbes pseudo-holomorphes équisingulières en dimension 4},
url = {http://eudml.org/doc/87825},
volume = {128},
year = {2000},
}

TY - JOUR
AU - Barraud, Jean-François
TI - Courbes pseudo-holomorphes équisingulières en dimension 4
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 2
SP - 179
EP - 206
LA - fre
KW - pseudo-holomorphic curve; equisingular curve; modular spaces; line arrangement; moduli space; genus; homology; almost complex manifold; pseudo-holomorphic line
UR - http://eudml.org/doc/87825
ER -

References

top
  1. [1] AUROUX (D.). — Symplectic 4-manifolds as Branched Coverings of CP2, preprint (auroux@math. polytechnique.fr). 
  2. [2] BARRAUD (J.-F.). — Sphères symplectiques à points doubles ordinaires positifs dans CP2, C.R. Acad. Sciences Paris, t. 327, Série I, 1998, p. 661-668. Zbl1007.58007MR99m:58035
  3. [3] GROMOV (M.). — Pseudo holomorphic curves in symplectic manifolds, Inventiones Math., t. 82, 1985, p. 307-347. Zbl0592.53025MR87j:53053
  4. [4] HOFER (H.), LIZAN (V.), SIKORAV (J.-C.). — On genericity of holomorphic curves in 4 dimensional almost complex manifolds, J. Geometric Anal., t. 7, 1997, p. 149-159. Zbl0911.53014MR2000d:32045
  5. [5] IVASHKOVICH (S.), SHEVCHISHIN (V.). — Structure of the moduli space in a neighborhood of a cusp curve and meromorphic hulls, Invent. Math., t. 136, 1999, p. 571-602. Zbl0930.32017MR2001d:32035
  6. [6] LIU (A.). — Some new applications of general wall-crossing formula, Gompf's conjecture and its applications, Math. Research. Lett., t. 3, n° 5, 1996, p. 569-585. Zbl0872.57025MR97k:57038
  7. [7] MCDUFF (D.). — The local behaviour of holomorphic curves in almost complex 4-manifolds, J. Differential Geom., t. 34, 1991, p. 143-164. Zbl0736.53038MR93e:53050
  8. [8] MCDUFF (D.). — Examples of symplectic structures, Inventiones Math., t. 89, 1987, p. 13-36. Zbl0625.53040MR88m:58061
  9. [9] MCDUFF (D.), SALAMON (D.). — J-holomorphic curves and quantum cohomology., Amer. Math. Soc. Univ. Lect. Notes, t. 6, 1994. Zbl0809.53002MR95g:58026
  10. [10] MCDUFF (D.) et D. SALAMON. — A survey of symplectic 4-manifolds with b⁺ = 1, Turk. J. Math., t. 20, n° 1, 1996, p. 47-60. Zbl0870.57023MR97e:57028
  11. [11] SIKORAV (J.-C.). — Local properties of J curves. — Chapitre V de Holomorphic curves in symplectic geometry, M. Audin et J. Lafontaine éd., Progress in Math., Birkhäuser, Basel, 1994. 
  12. [12] SIKORAV (J.-C.). — Singularities of J-holomorphic curves, Math. Zeit., t. 226, 1997, p. 359-373. Zbl0886.30032MR98k:58060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.