A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transformations
I. J. Schoenberg; Anne Whitney
Compositio Mathematica (1951)
- Volume: 9, page 141-160
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSchoenberg, I. J., and Whitney, Anne. "A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transformations." Compositio Mathematica 9 (1951): 141-160. <http://eudml.org/doc/88773>.
@article{Schoenberg1951,
author = {Schoenberg, I. J., Whitney, Anne},
journal = {Compositio Mathematica},
keywords = {linear algebra, polynomials},
language = {eng},
pages = {141-160},
publisher = {Kraus Reprint},
title = {A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transformations},
url = {http://eudml.org/doc/88773},
volume = {9},
year = {1951},
}
TY - JOUR
AU - Schoenberg, I. J.
AU - Whitney, Anne
TI - A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transformations
JO - Compositio Mathematica
PY - 1951
PB - Kraus Reprint
VL - 9
SP - 141
EP - 160
LA - eng
KW - linear algebra, polynomials
UR - http://eudml.org/doc/88773
ER -
References
top- P. Alexandroff and H. Hopf, [1] Topologie I, Berlin1935. JFM61.0602.07
- M. Fekete and G. Polya, [2] Über ein Problem von Laguerre, Rendiconti del Circolo Matematico di Palermo, 34 (1912), 1-32. JFM43.0145.02
- Th. Motzkin, [3] Beiträge zur Theorie der linearen Ungleichungen, Doctoral dissertation, Basel1933, published in Jerusalem1936, especially Chapter IV. Zbl0014.24601JFM62.0054.01
- Peter Scherk, [4] Über differenzierbare Kurven und Bögen, Casopis pro pĕstování Matematiky a Fysiky, 66 (1937), 165-191. JFM63.0647.04
- I.J. Schoenberg, [5] Über variationsvermindernde lineare Transformationen, Mathematische Zeitschrift, 32 (1930), 321-328. Zbl56.0106.06MR1545169JFM56.0106.06
- I.J. Schoenberg, [6] On Polya frequency functions II: Variation-diminishing integral operators of the convolution type. Acta Szeged, 12 (1950), 97-106. Zbl0035.35201MR35861
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.