The theory of asymptotic distribution modulo one

J. F. Koksma

Compositio Mathematica (1964)

  • Volume: 16, page 1-22
  • ISSN: 0010-437X

How to cite

top

Koksma, J. F.. "The theory of asymptotic distribution modulo one." Compositio Mathematica 16 (1964): 1-22. <http://eudml.org/doc/88895>.

@article{Koksma1964,
author = {Koksma, J. F.},
journal = {Compositio Mathematica},
keywords = {asymptotic distribution modulo one},
language = {eng},
pages = {1-22},
publisher = {Kraus Reprint},
title = {The theory of asymptotic distribution modulo one},
url = {http://eudml.org/doc/88895},
volume = {16},
year = {1964},
}

TY - JOUR
AU - Koksma, J. F.
TI - The theory of asymptotic distribution modulo one
JO - Compositio Mathematica
PY - 1964
PB - Kraus Reprint
VL - 16
SP - 1
EP - 22
LA - eng
KW - asymptotic distribution modulo one
UR - http://eudml.org/doc/88895
ER -

References

top
  1. [1] For references till 1986 cf. my Diophantische Approximationen (Berlin1936, Ergebnisse der MathematikIV, 4), in the following denoted by D. A. JFM62.0173.01
  2. [2] J. Cigler und G. Helmberg, Neuere Entwicklungen der Theorie der Gleichverteilung. Jahresbericht der D.M.V.64, 1-50 (1961). Zbl0109.03404MR125102
  3. A large part of: J.W.S. Cassels , An introduction to diophantine approximation (Cambridge Univ. Tract45, 1957) also is dedicated to our subject. Zbl0077.04801MR87708
  4. [3] E.g. P. Erdös in his contribution to this symposium: Problems and results on diophantine approximations, (this volume p. 52). 
  5. [4] For this and similar formulae cf. my notes: Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1. Mathematica (Zutphen)IIB, 7-11 (1942/43). 
  6. Eenige integralen in de theorie der gelijkmatige verdeeling modulo 1. Mathematica (Zutphen)11B, 49-52 (1942/48). 
  7. [5] S. Bundgaard, Ueber de Werteverteilung der Charaktere abelscher Gruppen, Math.-fys. Medd. Danske Vid. Selsk.14, No. 4, 1— 29 (1936).The author bases his work on VON NEUMANN'S notion of the mean value of an almost periodic function in a group (Transactions Amer. Math. Soc.86, 445 — 492 (1934)). Zbl0015.00602
  8. B. Eckmann, Über monothetische Gruppen. Comment. math. Helvet.16, 249- 268 (1948/44). Zbl0061.04402MR11302
  9. [8] E.g. by L. Kuipers and B. Meulenbeld. For references cf. CIGLER-HELMBERG quoted in [2]. 
  10. [9] For references cf. I.S. Gál - J.F. Koksma, Sur l'ordre de grandeur des fonctions sommables, Proc. Kon. Ned. Akad. Wet.58, 638-653 (1950)= Indagationes Mathematicae12, 192-207 (1950). Zbl0041.02406MR36291
  11. [10] E.g. cf. P. Erdös- I.S. Gál, On the law of the iterated logarithm, Proc. Kon. Ned. Akad. Wet.58, 65 - 84 (1955)= Indagationes Mathematicae17, 65-84 (1955). Zbl0068.05403
  12. [11] In his paper: Über die Gleichverteilung von Zahlen modulo Eins, Math. Ann.77, 313 - 352 (1916) p. 845. Zbl46.0278.06MR1511862JFM46.0278.06
  13. [12] Cf. my paper: Asymptotische verdeling van reële getallen modulo 1 I, II, III, Mathematica, (Leiden) 1 (1988), 245 - 248,2 (1938), 1-6,8 (1933), 107-114 and D. A. Ch. VIII. JFM59.0958.02
  14. [13] Part I (Zur Gleichverteilung modulo Eins) and Part II (Rhythmische Systeme, A und B) appeared in the Acta Math: J.G. Van Der Corput, Diophantische Ungleichungen, Acta Math.56, 373-456 (1931),resp.59, 209 - 328 (1932). Zbl0001.20102JFM57.0230.05
  15. [14] K. Mahler, On the fractional parts of the powers of a rational number, I, Acta Arithm, 8 (1988), 89 - 93,II, Mathematika (London) 4 (1957), 122 —124.For further references concerning (26) etc. cf. the paper of PISOT-SALEM in this volume (p. 164). Zbl0208.31002
  16. [15] I. Schoenberg, Ueber die asymptotische Verteilung reeller Zahlen mod. 1. Math. Z.28, 171-199 (1928). Zbl54.0212.02MR1544950JFM54.0212.02
  17. [18] R.J. Duffin and A.C. Schaeffer, Khintchine's problems in metric Diophantine approximation. Duke Math. J.8, 248-255 (1941). Zbl0025.11002JFM67.0145.03
  18. J.F. Koksma, Niet-lineaire simultane approximaties. Handel. Ned. Nat. Congres, 95 - 96 (1941). 
  19. ibid.Sur la theorie métrique des approximations diophantiques, Proc. Ned. Akad. Wet.48, 249 - 265 (1945).Indagationes Mathematicae7, 54 - 70 (1945), where also further references are given. Zbl0060.12206MR15096
  20. J.W.S. Cassels, Some metrical theorems in diophantine approximation. IProc. Cambr. Phil. Soc.46, 209 - 218 (1949).IIJ. London Math. Soc.25, 180 -184 (1950). Zbl0037.17201MR36787
  21. [19] D. De Vries, Metrische onderzoekingen van Diophantische benaderingsproblemen in het niet-lacunaire geval. (Diss. Amsterdam, V.U.), 1955. 
  22. [20] J.G. Van Der Corput, Verteilungsfunktionen. Proc. Kon. Ned. Akad. Wet.38, 813-821; 1058 -1060 (1988);89, 10-19; 19 - 26; 149-153; 339-344; 489- 494; 579 - 590 (1939). Zbl0014.20803JFM62.0207.03
  23. [21] For references cf. K. Roth, On irregularities of distribution. Mathematika (London) 1, 73-79 (1954). Zbl0057.28604
  24. [22] H. Davenport, Note on irregularities of distribution. Mathematika (London), 3, 131-135 (1956). Zbl0073.03402MR82531
  25. [24] M. Tsuji, On the uniform distribution of numbers (mod. 1). J. Math. Soc. Japan4, 313-322 (1952). Zbl0048.03302MR59322
  26. [25] For references cf. Dr. Cigler's third paper in this vol. (p. 44). 
  27. [26] N.M. Koroboff, Einige Probleme der Verteilung von Bruchteilen. Uspechi mat. Nauk4, 189 -190 (1949). 
  28. [27] W. Leveque, On uniform distribution modulo a subdivision. Pacific J. of Math.8, 757-771 (1953). Zbl0051.28503MR59323
  29. [28] In this respect I mention a result by C. Ryll Nardzewski, Sur les suites et les fonctions également réparties. Studia math.12,143 -144 (1951) which in certain cases gives a link between both theories. Zbl0042.28803MR42484
  30. [29] It is the theorem which in its one dimensional case is quoted as Satz 4 in D.A. p. 101 and which itself is related to the old theorem of VAN DER CORPUT, which is meant in § 5a after (38) in this paper.For further references cf also [31]. Several applications a.o. are given by A. Drewes, Diophantische Benaderingsproblemen. (Diss. AmsterdamV.U.), 1945. 
  31. [30] P. Erdös and A. Turán, On a problem in the theory of uniform distribution I, II. Proc. Kon. Ned. Akad. Wet. (ser. A.) 51, 370-378; 406-413 (1948),= Indagationes Mathematicae10, 370-378; 406 - 413 (1948). Zbl0031.25402
  32. [31] J.F. Koksma, Some theorems on Diophantine inequalities. Scriptum 5 of the Mathematical Centre, Amsterdam (1950). Zbl0038.02803MR38379
  33. [32] Cf. D. A. Ch. VIII, IX. 
  34. [33] J.W.S. Cassels, A new inequality with application to the theory of diophantine approximation. Math. Ann.126, 108 —118 (1953). Zbl0051.28604
  35. [35] Cf. D. A. IX, § 6, p. 116. 
  36. Similar problems for generalized dyadic fractions have been treated by C. Sanders, Verdelingsproblemen bij gegeneraliseerde duale breuken. (Diss. AmsterdamV.U.), 1950. 
  37. [36] A. Khintchine, Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Ergebnisse der MathematikII, 4, (1933). Zbl59.1153.01JFM59.1153.01
  38. [37] Cf. [36] and e.g. W. Feller, An introduction to probability theory and its applications I, sec. ed.New York-London (1960). Zbl0138.10207
  39. [38] P. Erdös and I.S. Gál, On the law of the iterated logarithm I, II. Proc. Kon. Ned. Akad. Wet. (ser. A), 58, 64-84 (1955),Indagationes Mathematicae17, 64-84 (1955). Zbl0068.05403MR69309
  40. [39] For ref. cf. e.g. my paper An arithmetical property of some sommable functions. Proc. Kon. Ned. Akad. Wet. (ser. A) 53, 960-972 (1950)= Indagationes Mathematicae12, 354-367 (1950). Zbl0038.19102
  41. [40] A. Khintchine, Eine arithmetische Eigenschaft der summierbaren Funktionen. Recueil Math., Moscou41, 11-13 (1934). Zbl0009.30602JFM60.0979.03
  42. [41] C. Ryll-Nardzewski, On the ergodic theorems, I, II. Studia MathematicaXII, 65-79 (1951). Zbl0044.12302MR46582
  43. [43] A proof of the first counter example in J.F. Koksma- R. Salem, Uniform distribution and Lebesgue integration. Acta Scient. Math. Szeged12, 87-96 (1950). Zbl0036.03101
  44. A proof of the second counter example in P. Erdös, On the strong law of large numbers. Transactions Amer. Math. Soc.67, 51— 56 (1950). 
  45. [44] Cf. my paper: Sur les suites (λn x) et les fonctions g(t) ∈ L(2). J. de Math. p. appl.85, 289 - 296 (1956). Zbl0070.28402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.