G -functions as self-reciprocal in an integral transform

Roop Narain Kesarwani

Compositio Mathematica (1967)

  • Volume: 18, Issue: 1-2, page 181-187
  • ISSN: 0010-437X

How to cite

top

Kesarwani, Roop Narain. "$G$-functions as self-reciprocal in an integral transform." Compositio Mathematica 18.1-2 (1967): 181-187. <http://eudml.org/doc/88936>.

@article{Kesarwani1967,
author = {Kesarwani, Roop Narain},
journal = {Compositio Mathematica},
keywords = {integral equations, integral transforms},
language = {eng},
number = {1-2},
pages = {181-187},
publisher = {P. Noordhoff N. V., Groningen},
title = {$G$-functions as self-reciprocal in an integral transform},
url = {http://eudml.org/doc/88936},
volume = {18},
year = {1967},
}

TY - JOUR
AU - Kesarwani, Roop Narain
TI - $G$-functions as self-reciprocal in an integral transform
JO - Compositio Mathematica
PY - 1967
PB - P. Noordhoff N. V., Groningen
VL - 18
IS - 1-2
SP - 181
EP - 187
LA - eng
KW - integral equations, integral transforms
UR - http://eudml.org/doc/88936
ER -

References

top
  1. R. Narain, [1] A Fourier kernel, Math. Z., 70 (1959), 297—299. Zbl0083.10202
  2. C. Fox, [2] The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395—429. Zbl0096.30804
  3. Bateman Manuscript Project, [3] Higher transcendental functions, vol. 1, McGraw Hill, New York, 1953. Zbl0051.30303
  4. R. Narain, [4] The G-functions as unsymmetrical Fourier kernels. III, Proc. Amer. Math. Soc., 14 (1963), 271—277. Zbl0113.28202
  5. R. Narain, [5] The G-functions as unsymmetrical Fourier kernels. I, Proc. Amer. Math. Soc., 13 (1962), 950-959. Zbl0111.06902MR144157
  6. E.T. Whittaker and G.N. Watson, [6] A course of modern analysis, Cambridge, University Press, 1915. Zbl45.0433.02MR1424469JFM45.0433.02
  7. G.N. Watson, [7] A treatise on the theory of Bessel Functions, Cambridge, University Press, 1922. Zbl48.0412.02MR1349110JFM48.0412.02
  8. E.C. Titchmarsh, [8] Introduction to the theory of Fourier integrals, Oxford, University Press, 1937. JFM63.0367.05
  9. R. Narain, [9] On a generalization of Hankel transform and self-reciprocal functions, Rend. Sem. Mat., Torino, 16 (1956—57), 269—300. Zbl0078.10003
  10. R.S. Varma, [10] Some functions which are self-reciproval in the Hankel transform. Proc. London Math. Soc., Ser. 2, 42 (1936), 9—17. Zbl0015.16201JFM62.0478.04
  11. R.P. Agarwal, [11] On some new kernels and functions self-reciprocal in the Hankel transform, Proc. Nat. Inst. Sc., India, 13 (1947), 305—318. 
  12. G.N. Watson, [12] Some self-reciprocal functions, Quart, J. Math. Oxford, Ser. 1, 2 (1931), 298—309. Zbl0003.30201JFM57.0430.02
  13. K.P. Bhatnagar, [13] Two theorems on self-reciprocal functions and a new transform, Bull. Calcutta Math. Soc., 45 (1953), 109-112. Zbl0053.07805MR61203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.