-functions as self-reciprocal in an integral transform
Compositio Mathematica (1967)
- Volume: 18, Issue: 1-2, page 181-187
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKesarwani, Roop Narain. "$G$-functions as self-reciprocal in an integral transform." Compositio Mathematica 18.1-2 (1967): 181-187. <http://eudml.org/doc/88936>.
@article{Kesarwani1967,
author = {Kesarwani, Roop Narain},
journal = {Compositio Mathematica},
keywords = {integral equations, integral transforms},
language = {eng},
number = {1-2},
pages = {181-187},
publisher = {P. Noordhoff N. V., Groningen},
title = {$G$-functions as self-reciprocal in an integral transform},
url = {http://eudml.org/doc/88936},
volume = {18},
year = {1967},
}
TY - JOUR
AU - Kesarwani, Roop Narain
TI - $G$-functions as self-reciprocal in an integral transform
JO - Compositio Mathematica
PY - 1967
PB - P. Noordhoff N. V., Groningen
VL - 18
IS - 1-2
SP - 181
EP - 187
LA - eng
KW - integral equations, integral transforms
UR - http://eudml.org/doc/88936
ER -
References
top- R. Narain, [1] A Fourier kernel, Math. Z., 70 (1959), 297—299. Zbl0083.10202
- C. Fox, [2] The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395—429. Zbl0096.30804
- Bateman Manuscript Project, [3] Higher transcendental functions, vol. 1, McGraw Hill, New York, 1953. Zbl0051.30303
- R. Narain, [4] The G-functions as unsymmetrical Fourier kernels. III, Proc. Amer. Math. Soc., 14 (1963), 271—277. Zbl0113.28202
- R. Narain, [5] The G-functions as unsymmetrical Fourier kernels. I, Proc. Amer. Math. Soc., 13 (1962), 950-959. Zbl0111.06902MR144157
- E.T. Whittaker and G.N. Watson, [6] A course of modern analysis, Cambridge, University Press, 1915. Zbl45.0433.02MR1424469JFM45.0433.02
- G.N. Watson, [7] A treatise on the theory of Bessel Functions, Cambridge, University Press, 1922. Zbl48.0412.02MR1349110JFM48.0412.02
- E.C. Titchmarsh, [8] Introduction to the theory of Fourier integrals, Oxford, University Press, 1937. JFM63.0367.05
- R. Narain, [9] On a generalization of Hankel transform and self-reciprocal functions, Rend. Sem. Mat., Torino, 16 (1956—57), 269—300. Zbl0078.10003
- R.S. Varma, [10] Some functions which are self-reciproval in the Hankel transform. Proc. London Math. Soc., Ser. 2, 42 (1936), 9—17. Zbl0015.16201JFM62.0478.04
- R.P. Agarwal, [11] On some new kernels and functions self-reciprocal in the Hankel transform, Proc. Nat. Inst. Sc., India, 13 (1947), 305—318.
- G.N. Watson, [12] Some self-reciprocal functions, Quart, J. Math. Oxford, Ser. 1, 2 (1931), 298—309. Zbl0003.30201JFM57.0430.02
- K.P. Bhatnagar, [13] Two theorems on self-reciprocal functions and a new transform, Bull. Calcutta Math. Soc., 45 (1953), 109-112. Zbl0053.07805MR61203
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.