On a generalization of the Laplace transform

M. S. Rangachari

Compositio Mathematica (1968)

  • Volume: 19, Issue: 3, page 167-195
  • ISSN: 0010-437X

How to cite

top

Rangachari, M. S.. "On a generalization of the Laplace transform." Compositio Mathematica 19.3 (1968): 167-195. <http://eudml.org/doc/88960>.

@article{Rangachari1968,
author = {Rangachari, M. S.},
journal = {Compositio Mathematica},
keywords = {integral equations, integral transforms},
language = {eng},
number = {3},
pages = {167-195},
publisher = {Wolters-Noordhoff Publishing},
title = {On a generalization of the Laplace transform},
url = {http://eudml.org/doc/88960},
volume = {19},
year = {1968},
}

TY - JOUR
AU - Rangachari, M. S.
TI - On a generalization of the Laplace transform
JO - Compositio Mathematica
PY - 1968
PB - Wolters-Noordhoff Publishing
VL - 19
IS - 3
SP - 167
EP - 195
LA - eng
KW - integral equations, integral transforms
UR - http://eudml.org/doc/88960
ER -

References

top
  1. D. Borwein [1] Theorems on some methods of summability. Quart. J. Math. Oxford Ser. (2) 9 (1958), 310-316. Zbl0084.05901MR101430
  2. G.H. Hardy, [2] Divergent series. Oxford, 1949. Zbl0032.05801MR30620
  3. G.H. Hardy and E.M. Wright, [3] An introduction to the theory of numbers, 3rd ed., Oxford, 1954. Zbl0058.03301MR67125
  4. A. Jakimovski and C.T. Rajagopal, [4] Applications of a theorem of O. Szász for the product of Cesàro and Laplace transforms. Proc. Amer. Math. Soc.5 (1954), 370—384. Zbl0059.10201
  5. A. Jakimovski, [5] Some remarks on Tauberian theorems. Quart. J. Math. Oxford Ser. (2) 9 (1958), 114-131. Zbl0091.24402MR106374
  6. J. Karamata, [6] Sur les théorèmes inverses des procédés de sommabilité (La théorie des fonctions VI). Actual. Sci. Industr. No. 450. Paris, 1937. Zbl63.0169.02JFM63.0169.02
  7. C.T. Rajagopal, [7] Tauberian oscillation theorems. Compositio Math.11 (1953), 71—82. Zbl0052.05702
  8. C.T. Rajagopal, [8] Some theorems on convergence in density. Publ. Math. Debrecen5 (1957), 77—92. Zbl0079.08802
  9. M.S. Rangachari and Y. Sitaraman, [9] Tauberian theorems for logarithmic summability (L). Tôhoku Math. J. (2) 16 (1964), 257-269. Zbl0129.04501MR172039
  10. M.S. Rangachari, [10] A generalization of Abel-type summability methods for functions. Indian J. Math.7 (1965), 17—23. Zbl0128.28602
  11. L.A. Rubel, [11] Maximal means and Tauberian theorems. Pacific J. Math.10 (1960), 997—1007. Zbl0096.04001
  12. E.C. Titchmarsh, [12] The theory of functions, 2nd ed. Oxford, 1939. Zbl0022.14602JFM65.0302.01
  13. D.V. Widder, [13] The Laplace transform. Princeton, 1946. Zbl0063.08245JFM67.0384.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.